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UNIFIED PLASTICITY - AN ENGINEERING APPROACH 
 
 

1.  Introduction 
 

The mechanical behavior of materials is an essential component of Technology which has 
received considerable attention over many years. Of particular interest is the response of 
materials to mechanical and thermal loadings, the influence of environmental factors, and the 
conditions and mechanisms of failure. The terms "constitutive equations" and "material 
modelling" are usually applied to the analytical representation of the material response 
characteristics prior to total failure. There have been considerable advances on this subject in 
recent years due to better understanding of the physics of deformation and the advent of 
efficient computational capability which enables solution of complicated equations. 
 
This article is concerned with a particular approach for representing the time dependent 
inelastic behavior of isotropic polycrystalline solids as part of a combined elastic- inelastic 
formulation that does not rely on a yield criterion or loading and unloading conditions. The 
same equations are intended to apply for all loading circumstances such as straining at 
prescribed rates, creep under constant stress, and stress relaxation under constant strain; 
hence the term "unified" has been suggested for this class of constitutive equations. An 
objective of a unified constitutive theory is that it be applicable for certain classes of 
materials over a wide range of strain rates and temperatures. To be useful for engineers, the 
equations should be reasonably simple and have a firm physical basis and be consistent with 
the principles and constraints of Mechanics and Thermodynamics. It is noted that much of 
the work of materials scientists is motivated and intended for the development and 
improvement of materials and does not particularly address the needs of structural and 
mechanical engineers. As a consequence, care has to be exercised in transferring information 
and terminology from one field to the other. Also, the formulation should consider associated 
matters such as the determination of material parameters from test data and the 
implementation of the equations in computer programs. 
 
The direction taken for the development of the unified constitutive equations described here, 
those of Bodner and Partom (B-P), was that the overall framework should be consistent with 
the essential physics of elastic and inelastic deformations. In contrast to classical plasticity 
theory, those equations do not require a yield criterion or loading and unloading conditions. 
Details are intended to represent the principal macroscopic response properties such as strain 
rate sensitivity and temperature dependence of inelastic deformation, stress saturation under 
imposed straining, isotropic and directional hardening for both monotonic and reversed 
loadings, primary and secondary creep, thermal recovery of hardening, and stress relaxation. 
Since attention was given to the underlying physics in the development of the equations, 
recourse to specific microscopic mechanisms was not necessary. 
 
Publications on the reference unified constitutive equations have appeared since that of 
Bodner (1968) and have been spread over many journals and conference proceedings. The 
present article is intended to consolidate the information and also to serve as a general 
introduction to the subject. A review paper was published by Bodner (1987), but there have 
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been a number of contributions since then. In fact, the subject is approaching a level of 
maturity where it could be considered as a standard method for representing material 
response behavior. Other sets of unified constitutive equations have been proposed and some 
of them are referred to in this article. However, it is not the intention here to provide 
descriptions of all unified plasticity models or to make comparisons or offer criticisms. It is 
left to the practitioners of the art of engineering to decide what is useful for their purposes. 
 
2.  Concepts and Basic Equations  
Most of the discussion in this article is concerned with the small strain case where the elastic 
(fully reversible) and inelastic (non-reversible) strain rates are simply additive. A primary 
supposition in a formulation without a yield criterion is that both elastic and inelastic strain 
rates are generally non-zero at all stages of loading and unloading. For sufficiently accurate 
measurements, most all materials behave in that manner as described in Bell's (1973) 
historical review of the works of Hodgkinson - 1843, Wertheim - 1844, Bauschinger - 1886, 
von Kármán - 1911, and others. However, it was the success of the theoretical elasticians and 
subsequently the needs of engineering over more than 100 years that enshrined the concept of 
a pure elastic range bounded by a yield criterion. Regarding "post-yield" hardening, R. Hill, 
who has made significant contributions to classical plasticity and authored an early important 
book on plasticity theory, Hill (1950), has recently questioned the usefulness of a distinct 
global yield function as a reference for hardening, Hill (1994). 
 
The unified plasticity approach is based on the use of a single variable to represent all 
inelastic deformations and could be developed in formulations with or without a yield 
criterion. In the former case, it would be applied only in the non-fully elastic range. To 
illustrate the approach in the absence of a yield condition, such as the B-P theory, it is useful 
to consider the case of uniaxial stress, 11σ , in a uniform rod of homogeneous isotropic 
material at a constant temperature. For assumed small strains, 
  P

11
e
1111 ε+ε=ε &&&  (1) 

where 11ε&  is the axial deformation velocity gradient or, in the case of assumed small strains, 
the total axial strain rate, and both strain rate components are generally non-zero. The elastic 
axial strain rate e

11ε&  is obtainable from an elastic stress-strain relation, e.g. E/11
e
11 σ=ε && , 

where E is Young's modulus. Based on physical grounds and consistency with mechanical 
principles, the axial inelastic (plastic) strain rate P

11ε&  can be assumed to be a function of 
current values of state quantities and particularly of stress 11σ , load history dependent 
internal state variables gZ , total axial strain rate 11ε& , and temperature T, i.e., 

  ( )T,,Z,f 11g11
P
11 εσ=ε &&      . (2) 

In most applications of the unified approach, the possible dependence of P
ijε&  on ijε&  is ignored.  

 
Under conditions of imposed constant total axial strain rate 111 R=ε&  and constant 
temperature as in a standard uniaxial tensile test, eq. (1) could be integrated in time to 
provide a stress-strain curve at the prescribed rate. A stress-strain curve, therefore, is not a 
basic material property but the consequence of a particular test arrangement and test 
conditions while the material properties are given by the expressions for e

11ε&  and P
11ε& . [Of  
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course, a standard stress-strain curve at a low strain rate is useful as a measure of material 
strength in many engineering applications.] For the stressed uniform rod, unloading at a 
given stress and strain condition could be achieved by reversing the imposed strain rate, say 
to 1R− . Eq. (1) would still apply with 111 R−=ε&  which can again be integrated in time. With 
a theory without a yield criterion, both elastic and inelastic strains would be realized during 
the complete unloading process to zero stress although the contribution of P

11ε&  would be very 
small at low stress levels. That is, unlike classical elastic-plastic theory, unloading is not fully 
elastic. A yield criterion would require that 0P

11 =ε&  for stress levels in the fully elastic range. 

For creep conditions at constant temperature, the axial stress 11σ  is constant so that e
11ε&  is 

zero and P
1111 ε=ε && , eq. (2), which provides the relation for the change of axial strain with 

time. In the case of constant total axial strain imposed subsequent to a straining history, 
011 =ε&  so that P

1111
e
11 E/ ε−=σ=ε &&&  and stress relaxation takes place. With the unified 

formulation, plasticity, creep, and stress relaxation are consequences of particular loading 
conditions and are not separate material properties. 
 
Applying the unified representation to actual materials, particularly metals, involves 
generalizing the equation for P

11ε&  to the multi-dimensional case and using specific analytical 
expressions. Also, since plastic deformation is considered to be incompressible and thermal 
expansion is dilatational, it may be more convenient in some applications to separate the 
isotropic stress-strain relations into deviatoric and dilatational components, 
  ( ) 3,2,1k,j,i,eeG2s P

ijijij =−=  (3a) 

  ( )[ ] ( ) ( )kk

3

1k
kkokkkk ,TT3K3 ∑

=

⇒−α−ε=σ  (3b) 

where G is the shear modulus, K is the bulk modulus, T0 is the reference temperature, and 
α is the thermal expansion coefficient which should be appropriately defined in the 
temperature range from T0 to T. The deviatoric stress and strain rates are defined by: 

ijkkijij )3/1(s δσ−σ=  and ijkkijij )3/1(e δε−ε= &&&  where ijδ  is the Kronecker delta function 

( )ji,0;ji,1 ijij ≠=δ==δ . Due to incompressibility of plastic deformation, 0P
kk =ε& , the 

plastic strain rate is deviatoric, P
ij

P
ij e&& =ε . Under non- isothermal loadings, the elastic moduli G 

and K, which are simply related to the usual engineering moduli E and ν, and the thermal 
expansion coefficient α are generally functions of temperature T. To obtain the differential 
form of eqs. (3a), (3b) accounting for temperature changes in the material constants, the full 
time derivative of those equations is evaluated, 

  ( ) ( ) T
T
G

ee2eeG2s P
ijij

P
ijijij

&&&&
∂
∂−+−=  (3c) 

  
( )

( )[ ] ( ) T
T

TTK9T
T
K

TT33

T3K3

00kk

kkkk

&&

&&&

∂
α∂

−−
∂
∂

−α−ε+

α−ε=σ
 (3d) 

where G, K and α and their temperature derivatives are the current values at T. 
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As in eq. (2), the multi-dimensional plastic strain rate P
ijε&  is a function of current values of 

state quantitie s, 
  ( )T,,Z,fe ijgij

P
ij

P
ij εσ==ε &&&  (4) 

where the load history dependent variables gZ  are considered to represent the hardened state 

of the material with respect to resistance to plastic flow, and ijε&  is the total strain rate. The 

influence of temperature on P
ijε&  is discussed later and temperature history effects due to non-

isothermal conditions can usually be described using data obtained from isothermal tests. 
Certain microscopic processes, however, such as dynamic strain ageing could lead to inverse 
strain rate and temperature history effects over some range of strain rates and temperatures 
and require particular analyses which are not considered here. 
 
The proposed expression for P

ijε&  is based on the isotropic form of the Prandtl-Reuss flow law 
which is taken to be a physical law by itself independent of a yield criterion, 
  ij

P
ij

P
ij se λ==ε && 0:0; P

kk ≥λ=ε&  (5) 

where λ is a scalar function of current state quantities. Equation (5) states that plastic 
straining is in the direction of deviatoric stress and that plastic deformation is incompressible. 
Squaring eq. (5) leads to  

  ( ) 2/1

2
P
22

2P
2 J/D  ,  JD =λλ=  (6) 

where ( ) P
ij

P
ij

P
2 ee2/1D &&=  and ( ) ijij2 ss2/1J =  are the second scalar invariants of deviatoric 

plastic strain rate and deviatoric stress respectively and are coordinate-independent. 
Proposing an expression for P

2D  in the form of equation (4) would then enable λ in equations 
(5,6) to be determined. Engineers usually find it more convenient to work with the effective 
values of plastic strain rate,  

  ( )( )
2/1

P
ij

P
ij

2/1P
2

P
eff

P
eff ee

3
2

D3/2e 




===ε &&&&  (6a) 

and effective stress  

  ( )
2/1

ijij
2/1

2eff ss
2
3

J3 




==σ  (6b) 

which can be expressed in terms of the respective components and reduced in the uniaxial 
stress case to P

11ε&  and 11σ . 
 
A number of expressions for P

11ε&  appear in the materials science literature that are intended to 
correspond to particular thermally activated dislocation mechanisms. Rather than use any of 
these functions, a general growth law is employed which has the desirable properties that 
plastic strain rate is very small at low stresses and has a limiting saturation value at high 
stresses. The proposed expression relating the invariants of plastic strain rate and stress is as 
follows: 
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σ

−=
n

2
eff

2
2
0

P
2

Z
expDD  (7) 

This form has been used in the social and biological sciences and, as shown in Fig. 1, has 
ranges of incubation, rapid growth, and saturation. In eq. (7), n controls the rate of growth 
and thereby rate sensitivity, Z is interpreted as the load history dependent scalar "hardening" 
parameter, i.e. an internal state variable, which could have isotropic and directional 
components, and 0D  is the limiting value of P

2D  at high stress and acts as a scale factor in 
the equation. From an overall physical viewpoint, n controls the inherent "viscosity" of 
inelastic flow and Z is a measure of resistance to inelastic deformation which is directly 
related to the micro-structural arrangements responsible for the so-called stored energy of 
cold work (SECW). Both n and Z are generally and separately temperature dependent so that 
an explicit temperature term does not appear in eq. (7) which can be considered to be a 
general macroscopic description of inelastic response due to "thermally activated" dislocation 
mechanisms. Although the plastic flow law, eq. (5), indicates no plastic volume change, 
dependence on pressure could be included parametrically through n and/or Z. 
 
Substituting eq. (7) into eqs. (6) and (5) leads to a general expression for the plastic strain 
rate components, 

  
eff

ij

n

2
eff

2

0
P
ij

s3Z
2
1

expD
σ

















σ

−=ε&  (8) 

and the particular cases of uniaxial stress 11σ  and simple shear 12τ  are, 

  

















σ

−









σ
σ

=ε
n2

11
0

11

11P
11

Z
2
1

expD
3

2
&  (9) 

  




















τ
−








τ
τ=γ=ε

n2

1212

12
0

P
12

P
12

3

Z
2
1

expD
2
1

&&  (10) 

where 12γ&  and 12τ  are the engineering shear strain rate and stress. 
 
Linear and semi- logarithmic plots of eq. (9) in non-dimensional coordinates are shown in 
Figs. 1 and 2, but the curves in Fig. 1 are not physically meaningful beyond 1Z/11 =σ  
except to show the limiting inelastic strain rate. It is seen that the parameter n controls rate 
sensitivity and as n becomes large for a given plastic strain rate, the non-dimensional stress 
term Z/11σ  approaches unity and its rate dependence diminishes. Rate independent 
plasticity is therefore a limiting case in the formulation. The parameter n also has an 
influence on the stress level in addition to that of the hardening variable Z. It would be 
expected that n should normally vary inversely with temperature. Increasing temperature 
would therefore lower n leading to enhanced rate sensitivity and a reduced level of the stress-
strain curves, e.g. Fig. 3 which is a plot of eq. (9) for assumed n/1)a/T( =  (where "a" is a 
material constant). An empirical form that serves as a reasonable approximation for some 
metals is ( )T/BAn += . Inversely, as the temperature approaches absolute zero, n would  
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become large leading to Z11 =σ  which is referred to as the rate independent "mechanical 
threshold stress" for thermally activated deformation mechanisms. 
 
According to eq. (8), an increase in Z corresponding to increased resistance of plastic flow 
would require a stress increase to maintain the same plastic strain rate. Usual measures of the 
hardened state are plastic work and accumulated plastic strain. Plastic work is generally 
preferred by investigators in Solid Mechanics, e.g. Hill, (1950), and leads to better agreement 
with strain rate jump tests. With plastic work rate (per unit volume) P

effeff
P
ijijpW εσ=εσ= &&&  as 

the hardening rate measure, a suitable and simple evolution equation for isotropic hardening 
ZI is,  

  
1r

1

2
I

11p
I

11
I

Z
Z)t(Z

ZA)t(W)]t(ZZ[m)t(Z 






 −
−−= &&  (11) 

with the initial condition ZI(0) = Z0. In the first term, Z1 is the limiting (saturation) value of 
ZI and m1 controls the hardening rate. The negative part of the first term is necessary to 
ensure that stress-strain curves saturate; otherwise the response would revert to elastic 
behavior at large Wp. It is referred to as "dynamic recovery" in the materials science 
literature. 
 
The second term of eq. (11) corresponds to thermal recovery of hardening with Z2 as the 
minimum value at a given temperature and A1, r1 are temperature dependent material 
constants. Straining from the fully annealed (recovered) condition would generally require Z0 
= Z2. Consideration of thermal recovery of hardening is essential for high temperature 
applications and secondary (constant rate) creep is the condition under constant stress at 
which 0Z I =&  or Z becomes constant. Secondary creep could also occur in the absence of 
thermal recovery of hardening by the hardening values reaching saturation; in the case of 
only isotropic hardening, when 1

I ZZ = . A more extensive discussion of creep of metals 
appears in a subsequent section. 
 
As noted previously, probable temperature dependence of the overall hardening variable Z in 
the general response equation (8) has to be considered. A possible method could be based on 
multiplying Z by a continuous function of T which is determined empirically as in the 
Johnson-Cook equation, e.g. (1-T*d), where )TT/()TT(*T 0m0 −−=  and Tm is melting, T0 is 

reference )TT( 0≥ , and d is an empirical value. Alternatively, the minimum and maximum 
values of the hardening parameters Z0 and Z1 could be considered to be functions of 
temperature according to the empirical expression. However, that function would approach 
zero at melting which would lead to unrealistic va lues of plastic strain rate so its applicability 
is limited. 
 
An exercise for representing stress-strain test results for annealed pure copper by the B-P 
equations over a range of temperature, RT to 800°C, and at a constant strain rate of 2000/sec 
was carried out by Bodner and Rajendran (1996). Isotropic hardening with the saturation 
value Z1 reducing bi- linearly with temperature led to very good agreement with the test 
stress-strain curves over the above temperature range, Fig. 15. Since the test data was 
available only at a single applied strain rate, it was not possible in this exercise to determine 
the effect of temperature on the parameter n which controls rate sensitivity as well as  
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influences the level of stress-strain curves. Hardening has a major role on the response of 
annealed copper and the ratio Z1/Z0 is relatively large, 12.8. Strain rate appears to have a 
strong effect on the hardening rate of copper at very high strain rates, which is discussed in a 
subsequent section. 
 
Generally, it has been found that values of the material constants obtained from isothermal 
tests at various temperatures can be used in non- isothermal applications with satisfactory 
results, Chan and Lindholm (1990b). Unusual temperature history effects due to very specific 
metallurgical mechanisms, such as dynamic strain ageing, are excluded and require separate 
treatment. From the computational viewpoint, this means that listings or analytical 
approximations of the material constants as functions of temperature should be part of the 
numerical procedure for non-isothermal conditions. An alternative, more formal method was 
suggested by Moreno and Jordan (1986), based on expanding the evolution 
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equation for isotropic hardening, eq. (11), to include terms dependent on temperature rate T& . 
As an example, an expression for ZI, in which thermal recovery of hardening is neglected, 
can be taken to be the basic representation for isotropic hardening rather than the evolution 
equation (11), i.e.  
  ( ) ( )p1011

I WmexpZZZZ −−−=  (12) 
where Wp is the accumulated plastic work (per unit volume) commencing from zero for 

0
I ZZ = . Considering the parameters m1, Z0, Z1 to be temperature dependent leads to, 

  

[ ]
( ) T

dT
dZ

dT
dZ

ZZ
ZZ

dT
dm

ZZW
dT
dZ

WZZmZ

01

01

I
11I

1p
1

p
I

11
I

&

&&


















 −








−
−

−−++

−=

 (13) 

Equation (13) indicates that increasing temperature in the primarily elastic range for which 

0~W ,0~W pp
&  and 0

I Z~Z  results in T
dT
dZ

Z 0I && =  which would be non-zero and negative 

valued. As a consequence, the stress level for the onset of significant inelastic straining, 
which is dependent on Z0, is reduced. The same result would be obtained using the original 
hardening evolution equation (11) and an appropriate numerical procedure that includes the 
dependence of Z0, and also Z1 and m1, on temperature. 
 
In eq. (10), D0 represents the limiting plastic strain rate in shear as the shear stress becomes 
large or as the hardening parameter Z approaches zero. An interesting question is whether 
such a limit exists physically. Referring to Orowan's equation for the plastic strain rate as a 
function of mobile dislocation velocity and density, suitable maximum values lead to a shear 
strain rate of the order of 108/sec with material dependent variations. Also, numerical 
exercises are now in progress which attempt to simulate atomic arrays with dislocation like 
defects subjected to extreme loadings and temperatures, e.g. Holian and Lomdahl (1998). 
Preliminary results indicate that a limiting plastic strain rate appears to exist as long as the 
arrays act as a crystalline solid but the response transits to viscous fluid- like behavior at very 
high stresses or at melting. A modification of the constitutive theory to represent this 
behavior has been proposed by Rubin (1987). From the viewpoint of application of the 
constitutive equations to engineering problems, this discussion implies that D0 is a 
meaningful physical quantity that would be material dependent over a limited range. It is 
appreciably above the strain rates in most applications, and should be specified in advance 
i.e. it should have an assigned value, and not be part of the determination of material 
constants from conventional test data. The same conclusion was reached by Mahnken and 
Stein (1996) based on studies of the numerical stability of the process for material parameter 
determination. 
 
In the initial applications of unified constitutive equations, most of the practical interest was 
on problems of high temperature creep and related topics in the quasi-static range with strain 
rates generally less than 1 sec-1. For this reason and to avoid numerical difficulties with the 
available computational techniques, it seemed adequate to set the parameter D0 in the basic 
kinetic equations (7), (8), to be 14 sec10 − . A number of sets of material constants were 
determined on that basis with good agreement between the numerical simulations and test 
results. More recently, unified constitutive models are used in problems involving high strain  
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rates such as dynamic loadings and shock wave propagation so the more physically based 
value of 18

0 sec10D −=  is utilized in the equations. In a subsequent section, sets of material 
constants are described for various metals based on either of the two values of D0. It is 
suggested that the sets of constants using the lower value of D0 be limited to applications 
with strain rates less than 10 sec-1. With the presently available numerical schemes for 
integrating the equations, as described in a subsequent section, there is no difficulty in using 

18
0 sec10D −=  and associated constants for the lowest strain rates. It is noted that the values 

of the materials constants depend upon the choice of D0. 
 
Many practical applications can be served using eq. (8) and isotropic hardening, eq. (11), and 
some are described in a later section. For interest, those equations were first published in a 
conference proceedings, Bodner and Partom (1972a), and in a reference journal, Bodner and 
Partom (1975). Numerical solution of the equations is generally necessary and suitable 
procedures have been developed. In the particular case of uniaxial stress σ11 and constant 
plastic strain rate, ,RP

11 =ε&  and the absence of thermal recovery of hardening, the equations 
can be readily integrated, Merzer and Bodner (1979), leading to an analytical expression for 
the stress-strain relation, 
  [ ] [ ]{ } /E)(mexpC/)( 1111s11s1111s σ−εσ−σ=σσ−σ  . (14) 

Here, 11s ZK=σ  is the saturation (maximum) stress, m1 is the rate of isotropic hardening 
from eq. (11), and  

  ( )[ ] ( )1/2n-

01  R3/D2n2K l=  (14a) 

  )ZZK/()ZZ(C 101011 −=  (14b) 
 
The usual test condition, however, is control of extension or total strain rate. Equating 
response behavior for the same plastic and total strain rates at the higher strains seems 
reasonable but may not be a good approximation at the "knee" of the stress-strain curve, i.e. 
at stresses slightly above the essentially elastic range. That may be the region of interest for 
inelastic buckling problems which will be discussed. Numerical solution of the complete set 
of equations for the uniaxial stress case to obtain a stress-strain curve at a prescribed total 
strain rate is currently not difficult to perform. The usual engineering yield stress yσ  at 0.2% 
strain offset can be readily obtained from that curve and would be rate dependent. It follows 
from eqs. (14,14b) that 010 ZK=σ  where 0σ  is the initial stress level of the stress - fully 

plastic strain relation, i.e. at 0P =ε . The deduced value 0σ  should be comparable to yσ  so 

that a practical "yield stress" can therefore be obtained from a theory without a prescribed 
yield condition. 
 
Equation (11) seems to be the simplest expression for isotropic hardening that provides the 
principal response characteristics of homogeneous metals. Various modifications based on 
physical considerations on the microscopic level have been proposed to improve the 
representational capability, e.g. Estrin and Mecking (1986), but these have not been 
adequately examined in applications. Alternatively, some modifications have been suggested 
based directly on enhancing correspondence between simulations and test results for certain 
metals and for some loading conditions; these are described in the following section. 
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An important limitation of the isotropic hardening format is its inability to properly represent 
the response due to changes in the direction of loading. For this purpose, the concept of 
directional hardening is useful which describes the orientational nature of part of the 
developed resistance to continued deformation. It would operate primarily on the developed 
slip planes of the materials and is therefore dependent on stress history and its current value. 
The so-called Bauschinger effect, which refers to the reduction of hardening upon reversed 
loading, is the classical example of directional hardening. The terms "anisotropic" and 
"kinematic" hardening are also used for that purpose but the first is not an accurate use of the 
word and the second is based on Prager's hardening model of classical plasticity in which a 
yield surface undergoes rigid body motion in stress space. 
 
A simplistic physical description of directional hardening for single phase pure metals and 
metallic alloys along the lines of the explanation by Orowan (1959) is that the impediment of 
dislocation motion on the active slip planes by obstacles, impurities, or other dislocations 
during the initial loading phase leads, upon reversal of the stress, to enhanced mobility of 
some of the restrained dislocations in the opposite direction. That is, resistance to dislocation 
movement is lower for a limited strain excursion in the reversed stress direction. It follows 
that the strain energy of the local, self-equilibrating stress fields due to the dislocation 
interactions, the stored energy of cold work (SECW), would be initially reduced by the stress 
reversal. There seems to be ample experimental evidence for the partial reversibility of 
dislocations, Sleeswyk et al. (1986), and of the SECW, Halford (1966). Halford confirmed 
that the reversible action of part of the SECW cannot be due to macroscopic residual stresses 
but has its origin on the microstructural level. 
 
The actual physics of the material response to reversed stressing is complicated and has been 
the subject of extensive investigations. As an example, a discussion of detailed dislocation 
mechanisms that could be responsible for directional hardening was presented by Miller 
(1987). For two phase metals such as a steel containing a small fraction of dispersed small 
particles, the internal stress fields due to interactions between the particles and the matrix 
would also influence the directional hardening properties and the SECW. At large pre-strains, 
a primary mechanism for softening upon stress reversal could be an alteration in the 
geometry of the developed dislocation arrangements. Regardless of the detailed mechanisms, 
the objective on the continuum level is to provide adequate representation of the response 
characteristics consistent with the underlying physics. 
 
Guided by the above considerations, directional hardening is treated in the proposed 
constitutive theory as a second order tensor β ij with an evolution equation similar in general 
form to that of isotropic hardening, 
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where Z3 is the saturated value of directional hardening, m2 is the hardening rate, and  
  2/1

klklijij )]t()t(/[)t()t(u σσσ=  (15a) 
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are the direction cosines of the current stress state. Also, 
  2/1

klklijij )]t()t(/[)t()t(v βββ=  (15b) 

which indicates that thermal recovery reduces β ij in its current direction, and it has been 
assumed that there is no initial directional hardening, i.e. β ij(0) = 0. The maximum isotropic 
hardening value Z1 is used in eq. (15) only for dimensional purposes. An essential step in the 
use of eq. (15) in the expression for plastic strain rate, eq. (8), is that a scalar effective value 
of β ij, namely its amplitude in the direction of current stress uij, 
  ijij

D uZ β=  (16) 
is added to the isotropic hardening term ZI to form a total hardening value,  
  DI ZZZ += .  (16a) 
In the particular case of uniaxial stress, loading to an initial stress σ11 would generate a value 
for β11. Upon unloading and at the onset of stress reversal, β11 would remain essentially 
unchanged while u11 becomes negative or 11

DZ β−=  which reduces the total Z value. In all 
practical cases, ZD would be less than ZI so that Z is always positive. This procedure directly 
influences the hardening variable and appears to simulate the actual physical process 
consequent to reversal of stress. 
 
An exercise was performed by Bodner and Lindenfeld (1995) to examine the thermodynamic 
consistency of the basic equations including those to represent directional hardening. [A 
related publication is that of Senchenkov and Zhuk (1997).] It was also of interest to compare 
predictions of the equations to the test results of Halford (1966) on repeated cyclic torsional 
loading of thin tubes of annealed copper. In particular, Halford measured the detailed 
changes in SECW during cycling, while the magnitude of the directional hardening variable 

ijβ  in the formulation is intended to be directly related to the potentially reversible part of 

the SECW upon stress reversal. The correspondence obtained between predictions and test 
data is good and the sharp drop in SECW upon stress reversal is indicated, Fig. 4. 
 
Repeated load reversals are of particular technological interest and consideration of both 
isotropic and directional hardening provides the basis for modelling those conditions. For 
some circumstances, modifications of the hardening evolution equations are required which 
are discussed in a following section. 
 
An alternative and seemingly more popular method for representing the softening effect upon 
stress reversal is to identify a state variable αij, usually termed the "back stress", with the 
origin of a yield surface in Prager's kinematic hardening model. On that basis, the governing 
flow law becomes, 
  )s( ijij

P
ij ' α−λ=ε&  (17) 

where λ' would be a scalar function of ijijs α− , an isotropic hardening variable Z', and the 
temperature. Consequently, the equation for plastic strain rate in the uniaxial stress case can 
be expressed in the form,  
  ( ) ( )11111111

P
11 ssgnT,Z,sf ' α−α−=ε&  (18) 

An evolution equation similar to eq. (15) for β ij is usually employed for αij, which is 
deviatoric, with differences in the hardening measure and the direction of saturation. In  
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particular, investigators using eq. (17) generally use an evolution equation that is a more 
complicated version of the basic form, 

  

[ ]
)t(y

Z
)]t()t([

ZA

)t()t()t(wZm)t(

ij

1

2/1
klkl

12

P
effijij33ij

'
''

''







 αα−

εα−=α &&

 (19) 

where 

  [ ] 2/1P
kl

P
kl

P
ijij )t()t(/)t()t(w εεε= &&&  (19a) 

  2/1
klklijij )]t()t(/[)t()t(y ααα=  (19b) 

 It is seen that the back stress αij not only provides for the Bauschinger effect but also 
influences the direction of plastic straining. Most unified theories that utilize the back stress 
variable are based on an explicit yield criterion and others modify the hardening evolution 
equations to imply a yield condition. According to Chaboche (1993b), a practitioner of the 
back stress approach with a yield criterion, the term αij, like β ij, is directly related to the 
reversible part of the SECW under reversed stressing conditions. That is, αij should also 
represent the macroscopic effect of internal self-equilibrating stress fields on the microscopic 
level. As a consequence, ijα  is more equivalent to a resistance, with the dimension of stress, 
than an actual macroscopic stress that could, by itself, enter an equilibrium equation. 
Somewhat similarly, Miller (1987) interprets the resistance corresponding to directional 
hardening in terms of a "back stress" variable in his formulation. From the viewpoints of 
mechanics and thermodynamics, the B-P method described in this article of utilizing a 
directional hardening variable ijβ , and the use of a "back stress" variable ijα , are both 
admissible and essentially correspond to the same physical effect. The choice is primarily in 
simplicity of application including the identification of the material parameters and in 
computational efficiency. Formulations based on either procedure in its simplest form 
generally require modifications or extensions to represent the complexities of actual material 
behavior. Extensions and applications of the basic equations (8) and (11), with the inclusion 
of directional hardening according to eqs. (15),(16), are discussed in the following sections. 
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3.  Extensions and Applications of the Basic Equations 
3.1  Variable Rate of Hardening/Cyclic Loadings 
 
For the case of uniaxial stress, assumed isotropic hardening with no thermal recovery, and 
constant plastic strain rate, a specific form of stress-strain curve is obtained given by eq. (14). 
Some materials such as annealed copper and aluminum exhibit an extensive work hardening 
region which is not well represented by that equation. To obtain more flexibility and thereby 
better agreement with test results, a modification was suggested by Bodner et al. (1979) to 
consider the term m1, which controls the hardening rate, to be itself a function of 
accumulated Wp which introduces two additional material constants,  
  ( )p2101 Waexpaam −+=  (20) 
An alternative method based on the current value of the hardening variable ZI was proposed 
by Khen and Rubin (1992), namely, 
  ( ) ( )[ ]0

I
c1b1a1b11 ZZmexpmmmm −−−+=  (21a) 

with m1a, m1b, m1c being positive constants and Z0 being the initial value of ZI. Typically, the 
value of m1a is larger than m1b so that eq. (21a) causes m1 to decrease from its initial value of 
m1a towards the lower value m1(Z1) which serves to smoothen the stress-strain curve. A 
similar modification can be used for the directional hardening rate term m2 in eq. (15), 
  ( ) ( )D

c2b2a2b22 Zmexpmmmm −−+=  (21b) 
This expression serves to generate a rapid increase in the rate of directional hardening upon 
stress reversal which is observed in cyclic loading tests. It also tends to smoothen the 
somewhat "squarish" form of the reversed stress-strain curve. These modifications have been 
used in a number of applications.  
 
Thermal recovery of hardening can be important at high temperatures and sometimes 
requires more exact representation than the simple power law expressions used in eqs. (11) 
and (15). An example is the titanium alloy "Timetal 21S", which is proposed for use in metal 
matrix composites, where the large rate sensitivity exhibited at 650°C is controlled by 
thermal recovery of hardening. In this case, it was useful to expand the coefficient A1 in eq. 
(11) in a similar manner, as discussed by Neu and Bodner (1995), 
  ( ) [ ])ZZ(AexpAAAA 2

I
c1b1a1b11 −−−+=  (22) 

which introduces two more material constants. 
 
The equations described here are capable of adequately representing the Bauschinger effect 
and reversed loading response especially when variable rates of hardening are introduced, 
eqs. (21a, 21b). However, stress saturation of cyclic loading due to cyclic hardening or 
softening may not be well characterized since the same maximum isotropic hardening 
variable 1Z  applies for both monotonic and cyclic straining. This means there would be a 
relation between monotonic and cyclic stress-strain curves where the latter is the locus of 
peak points of saturated loops at different strain amplitudes. Although such a relation seems 
to exist for some materials, as reported by Chan et al. (1989) for a high temperature alloy, it 
is not sufficiently general. For representation of repeated cyclic loadings, modification of the 
evolution equation for the isotropic hardening variable ZI, which controls the growth or 
contraction of cyclic stress-strain curves, appears to be necessary. Such a procedure has been 
developed by Chaboche and co-workers, reported by Chaboche (1993a), using a unified 
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theory with the "back stress" approach. A similar modification could be adopted to the 
corresponding equation of the B-P model. Another procedure that provides for the influence 
of the cyclic loading history on the isotropic hardening variable was suggested by Bodner 
(1991) but has not been evaluated in applications. Repeated reversed loading conditions with 
non-zero mean stress could lead to ratchetting for some materials such as stainless steels. It 
seems that this effect is directly related to directional hardening and that modification of the 
evolution equation (15) is required. Procedures for doing so have been developed by Ohno 
and Wang (1993) and more recently by Ohno and colleagues: Mizuno et al. (2000), Ohno 
and Adbel-Karim (2000). 
 
3.2  Strain Rate Dependence of Hardening Rate 
 
As noted, the basic equations are based on thermal activation of dislocation motion as the 
primary mechanism governing plastic straining, and the evolution equations for hardening, 
eq. (11), (15), (16), depend only upon the loading history. However, Klepazco and Chiem 
(1986) and Estrin and Mecking (1986) and other investigators have indicated that strain rate 
dependence of the hardening process could be an important factor in the response of fcc 
metals at moderate and high strain rates. In fact, experiments on annealed pure copper at high 
strain rates, Follansbee and Kocks (1988) and Tong et al. (1992), indicate strong rate 
sensitivity of hardening at rates greater than about 104sec-1. It was shown by Bodner and 
Rubin (1994) that, for the case of simple shear and isotropic hardening, a modest 
modification of the isotropic hardening evolution equation (11) without thermal recovery can 
serve to provide predictions that are consistent with the available test data.  
 
For annealed copper under shear, eqs. (10) and (11) in conjunction with eq. (21a) were used 
to obtain compatibility with quasi-static stress-strain test results. At high strain rates, the 
essential modification was to consider the hardening rate m1 to be also a function of total 
strain rate by setting m1a in eq. (21a), the initial value of m1, to be 
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where effε&  is the effective (deviatoric) total strain rate, eq. (6a) with P
ije&  replaced by ije& , and 

o
effε&  and q are additional material constants. A set of material constants consisting of those 

obtained by matching the quasi-static tests and taking q=1 and o
effε&  to be 1×104sec-1 was 

found to give good correspondence with the high strain rate data of Tong et al. (1992), Fig. 5. 
A feature of the proposed procedure is that the entire relation between the hardening variable 
Z and plastic work or strain between Z0 = 72 MPa and Z1 = 920 MPa is accessible for all 
imposed strain rates. That is, at slow loading Z1 would only be approached at the larger 
strains while at high strain rates Z1 will be approached at small strains approximating ideal 
elastic-perfectly plastic response. 
 
The plot of stress dependence on the logarithm of strain rate for copper at a shear strain of 
20% is shown in Fig. 5 [from Bodner and Rubin (1994)]. The lower curve corresponds to 
constant Z = 222 MPa which is the hardening value obtained at the shear strain γ = 0.20 
using the set of material constants that match the low strain rate stress-strain curve. A stress- 
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strain rate curve for the constant hardening saturation value Z1 = 920 MPa is also shown. Fig. 
5 indicates that strain rate dependence of the hardening rate, eq. (23), considerably increases 
the stress response at the high rates to more rapidly approach the saturation value. A 
consequence of the hardening rate mechanism is that attempts to model the behavior of 
copper using only the basic equations and a limited rate range of reference test data could 
lead to large variations of the strain rate sensitivity parameter n. The modification given by 
eq. (23) was motivated by test results and implies that the physical basis of the effect is due 
to changes in the inelastic deformation mechanisms at high strain rates and not in the 
microstructural configuration at saturation, i.e. Z1 remains unchanged. This observation may 
be useful in understanding the physics of inelastic deformation at very high strain rates. 
 

3.3  Creep of metals 
 
For metals, most all creep deformations are permanent, i.e. "inelastic" or "plastic", while a 
small fraction could be "anelastic" or geometrically reversible. According to Bell (1973), 
observations of room temperature creep of iron under high constant stress was reported as 
early as 1830 and measurements of strain with a resolution as low as 610−  were then 
possible. Modern investigators, however, usually refer to the work of Andrade in 1910 in 
which some ingenious test arrangements are described and test results are reported for a 
number of metals. Andrade and later Orowan (1947) suggested an empirical equation for 
transient (primary) creep strain, ( )P

11
c ε=ε , as a function of time, 

  1
3/1P

11
c c)t( +β=ε=ε  (33) 

for uniaxial stress conditions. In an important paper at the time, Wyatt (1953) showed that eq. 
(33) would apply to the transient creep of copper and aluminum at the higher test 
temperatures (approximately > 170ºC) while better matching could be obtained at lower 
temperatures by a logarithmic function of time, 

  2
P
11

c ctlog +α=ε=ε  (34) 

which had been proposed by other investigators. The logarithmic function has been shown to 
be a more generally useful representation. Over the years, other functional forms of transient 
creep as a function of time have been proposed based on empirical information. However, it 
should be emphasized that inclusion of explicit time dependence is not appropriate for a 
generally applicable constitutive equation. 

 
Some investigators have examined the effect of small increments and decrements of stress on 
the creep response. A few of these studies were directed toward studying the possible 
applicability of an equation of state of the form .0)T,dt/d,,(F cc =εεσ  It was demonstrated 
by Orowan (1947) that a general equation of state of that form for metals cannot be obtained. 
This is apparent since )( P

11
c ε=ε  is not a state quantity, i.e. it is not representative of the 

physical state of the material. It seems though that such an equation could serve as an 
approximation for some limited circumstances such as incremental loading without 
unloading, e.g. Wyatt (1953). 
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Steady state (secondary) creep is the condition of constant strain rate under constant stress 
which is physically attributed to the balance of the rate of hardening and the rate of thermal 
recovery of hardening (the Bailey-Orowan explanation). The situation could also be realized 
under imposed straining at a constant rate and leads to constant stress in the stress-strain 
relation. Steady state would also be obtained by saturation of hardening when thermal 
recovery is negligible, e.g. at the higher strain rates, or when thermal recovery dominates 
over hardening effects, e.g. at very low strain rates. In the materials science literature, the 
steady state creep strain rate is expressed as a function of stress, temperature, and a myriad of 
quantities that represent overall physical properties and aspects of the microstructure and 
mesostructure, e.g. grain size, dispersion of particles. Such equations serve as important 
guides in the development of creep resistant alloys, e.g. Nabarro and Filmer (1993). 
 
The steady state cond ition, i.e. the steady creep rate, is generally independent of prior creep 
or straining history and is reasonably reproducible. That is, it is not particularly sensitive to 
small variations in ingredients or processing procedure. For this reason, better agreement can 
be obtained by a constitutive theory with steady creep results than with transient creep data. 
The latter is more subject to details of the initial substructure of the material and to the 
loading process. 
 
For the structural analyst, it has been traditional to separate time dependent creep effects 
from the presumed rate- independent stress-strain relation. An example is the BOSOR 
computer program for shell structures, Bushnell (1985), in which creep directly influences 
only the geometry of the structure with time. Its effect on the stress state is thereby 
secondary. This uncoupled plasticity-creep approach may be adequate under certain limited 
circumstances. 
 
An essential intention of unified constitutive theories is that all inelastic (non-reversible) 
strains are representable by a single variable. As previously described, creep is the response 
to a particular loading condition and, for the theory described in this article, is determined by 
eq. (8) and the associated evolution equations for hardening. In eq. (8), P

ijε&  is the inelastic 
strain rate which is a function of stress, temperature, and load history dependent state 
variables. Specifically, eq. (8) does not contain an explicit function of time, nor does it and 
the associated hardening evolution equations include plastic strain which is not a state 
quantity. 
 
The reference constitutive theory has been used in a number of exercises involving creep. 
Bodner (1979) examined the uniaxial stress behavior of a high temperature alloy, René 95, at 
a single high temperature (649ºC) using the isotropic hardening form with thermal recovery 
of hardening, eqs. (9) and (11). The test program for the reference data included uniaxial 
straining with monotonic and cyclic loadings, stress relaxation, and creep. The steady state 
creep and straining results shown in Fig. 16a indicate three distinct branches. At the test 
temperature, and the higher strain rates, 15P

11 sec10 −−>ε& , thermal recovery of hardening was 

negligible so that steady state resulted from 0Z and ZZ 1 →→ & . In the intermediate strain 

rate range, 157 sec1010 −−− − , steady state was a consequence of rate balancing in the  
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hardening evolution equation leading to 0Z →&  with corresponding constant inelastic strain 
rate at constant stress. For the lower strain rates, 17 sec10 −−< , the theory indicated steady 
strain rates due to dominance of thermal recovery with 0Z and ZZ 2 →→ & , where 2Z  is the 
stable value at a given temperature. Predictions based on the theory were in fairly good 
agreement with the test results which covered the P

11ε&  range 1-38 sec10  to10 −− , Fig. 16a. 
 
A more extensive investigation on creep characteristics based on the B-P theory was 
performed by Merzer (1982) in relation to reported results on copper. Again, the reference 
model consisted of eq. (9) with isotropic hardening and thermal recovery of hardening, eq. 
(11). Test data was available for secondary creep of copper under uniaxial tensile stresses at 
550ºC over the steady strain rate range of 147 sec014  to103 −−− ×× , and the model predictions 
were in fairly good agreement, Fig. 16b. These results covered only the central branch of the 
stress-strain rate relation but the tendencies at the two ends of the range and computed results 
indicated similar behavior to that of Fig. 16a. Another exercise performed by Merzer (1982) 
showed correspondence of the theory with transient creep test results of copper at 200ºC. 
Both sets of results corresponded approximately to eq. (34). The reference theory also 
seemed capable of demonstrating response characteristics due to stress increments and 
decrements superimposed on the applied stress. 
 
More recent investigations on the predictive capability of the constitutive theory under 
multiaxial creep conditions have been reported by Li and Sharpe (1996) and Zeng and Sharpe 
(1997). Numerical calculations of strains at the roots of notched specimens, based on adopt- 
ing the constitutive theory to the ABACUS finite element program, were compared to very 
accurate strain measurements with good correspondence. There seems to be no difficulty in 
using a unified elastic-viscoplastic model in conjunction with modern finite element and 
finite difference programs. This is discussed in a subsequent section of this article. 
 
The structural analyst is also challenged with stability problems. Consideration of both 
nonlinear and time dependent geometrical and material effects can lead to loss of stability 
which, in some cases, would be directly indicated from the output of the computer program. 
These instabilities could be caused by the growth of initial structural imperfections, by the 
increase of deformations due to non-uniform pre-buckling stresses, or by the transition to an 
unstable geometrical form, such as that of shallow arches of elastic-viscoplastic material 
[investigated by Simites et al. (1991)]. For some situations, such as the possibility of 
bifurcation, it may be useful that a stability criterion be injected into the numerical program; 
this is discussed in a subsequent section on viscoplastic buckling. 
 
3.4  Continuum damage as a state variable 
 
Another quantity representing the material state is the so-called "damage" variable which was 
introduced by Kachanov (1958), and further developed by Rabotnov (1968), to explain 
tertiary creep of metals. That refers to the increase of the rate of straining subsequent to 
secondary creep which leads to material failure. An attempt to define "continuum damage" in 
a general sense could be based on the postulate of a perfect i.e. undamaged, reference state. 
With respect to that state, damage could be interpreted as deterioration in the ability of a  
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material to support stress thereby magnifying the effect of stress on the response. A specific 
definition of "damage" is elusive but it is often considered to be the presence of geometrical 
discontinuities in the material such as voids, cracks or debonding of components which 
reduce the effective load carrying area. These defects are presumed to be small in size 
compared to the dimensions of the object under discussion but larger than the atomic scale; a 
level sometimes referred to as the "mesoscale". When the microvoids and microcracks are 
uniformly distributed and randomly oriented, then damage could be treated as a scalar state 
quantity. Like hardening, continuum damage is a somewhat abstract concept that intends to 
represent a definite physical effect without describing the detailed features on the 
microscopic level. When orientation effects of damage are important, then damage is treated 
as a second or fourth order tensor which is discussed, for example, by Krajcinovic (1996). 
 
In constitutive equations of the kind discussed here, damage would act to increase both the 
elastic and inelastic strain rates but the latter seems to be more important for ductile metals. 
A method for introducing the isotropic damage variable ω in the basic kinetic equation for 
inelastic straining (8) is to consider it as a softening parameter which decreases resistance to 
inelastic deformation. On that basis, the hardening variable Z in eq. (8) would be replaced by 

( )ω−1Z  where ω can have values from 0 to unity. Attempts have been made to quantify a 
critical damage value for failure and values ranging from 0.15 to 0.85 for metals have been 
suggested, Lemaitre (1992). 
 
Inclusion of continuum damage, ω, in the kinetic equation (8) requires specification of an 
evolution equation for that variable. For the uniaxial stress case, most investigations on the 
subject employ the general form, 
  ( ) [ ])1/(ff 21 ω−σω=ω&  (24) 
where 1f  and 2f  are traditionally taken to be power law functions. An alternative expression 
suggested by Bodner and Chan (1986) for isotropic damage development under multiaxial 
stress is  
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where p and H are material constants and ( ) 0~0ω . The assumed multiaxial stress function 

Q&  suggested by Hayhurst (1972) is, 

  [ ] z

1effmax CIBAQ ++ +σ+σ=&  (26) 

where +σmax  is the maximum tensile principal stress, +
1I  is the first stress invariant (positive 

for tension), effσ  is defined previously, and A, B, C and z are material constants where 
1CBA =++ . 

 For the case of constant applied stress, eq. (25) can be integrated to 
  ( ) ][ pQ/Hexp −=ω  (27) 
which is the same functional form as the kinetic equation (8) for plastic straining. It was 
shown by Bodner and Chan (1986) that introduction of the damage variable into the kinetic 
equation (9), i.e. )1(ZZ ω−→ , combined with the damage evolution equations (25), (26) 
and those for hardening, leads to reasonable agreement with creep test results, including  
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tertiary creep, for a high temperature alloy. A more thorough analysis and extension of the 
approach to model creep crack growth was performed by Chan (1988). 
 
As formulated above, damage effects are manifested by the development of tertiary creep, 
the decrease of the flow stress at moderately high strains under controlled straining, the 
changes in saturated stress-strain loops under repeated cycling i.e. fatigue, and as the 
precursor to the onset of cracking at stress concentrations. In principle, damage could also 
reduce the effective elastic moduli but the changes are usually difficult to measure in metals.  
 
When the damage variable is used in conjunction with constitutive equations such as 
discussed here, the conditions of plastic incompressibility and pressure independence of 
plastic flow are usually maintained. For various non-metals such as some crystalline rocks, 
primary deformation characteristics due to damage are dilation, pressure dependence, and 
possible damage healing, e.g. Brace et al. (1966). As an example, deformation of a 
cylindrical specimen of rock salt under sustained axial compression and confining pressure 
would exhibit pressure dependent dilation due to the formation of wing cracks. If the stress 
state were readjusted to hydrostatic pressure at some time, then healing of the developed 
damage and associated strains would take place in two stages. Initially and relatively rapidly, 
partial closure of the microcracks would occur, followed by slow sintering of adjacent 
material. Healing of damage does not seem to be a viable process for metals although they do 
experience thermal recovery of hardening. 
 
A method to treat such effects analytically is to add terms to the flow law, eq. (5), for damage 
induced straining that indicate dilation and pressure dependence and also for possible damage 
healing. These would be in addition to the stress enhancement influence of damage, and 
would correspond physically to the opening of microcracks that leads to dilation and which 
could be suppressed by the confining pressure. The evolution equations for damage 
development, eqs. (25), (26), also have to be expanded to include similar effects. Such a 
formulation was developed for rock salt in a series of papers by Chan et al. (1992,98,99). 
 
An approach to treating damage in the form of voids in ductile materials was developed by 
Rajendran et al. (1989). In this formulation, the basic response of the void- free matrix 
material is governed by the B-P equations for which rate dependent plastic flow is isochoric 
and pressure independent. A revised flow law is obtained by postulating a plastic potential 
that depends on deviatoric stress, pressure, and the rela tive density of voids or, 
correspondingly, the void volume fraction. The flow law associated with that potential 
function therefore includes dilatation and pressure dependence of inelastic deformation due 
to the presence of voids. Suitable evolution equations for void nucleation and growth are 
derived so that a full set of equations for the generation and expansion of voids in a rate 
dependent ductile matrix is obtained. Material failure develops at high volume fractions of 
voids due to their coalescence. It is interesting that both the method of Rajendran et al. 
(1989) for void damage in ductile metals and that of Chan et al. (1992,98,99) for damage in 
the form of wing cracks in rock salt depend on suitable generalization of the flow law for 
inelastic deformation. 
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3.5  Nonproportional loadings 
 
Proportional loading is the condition that the ratios of the respective components of stress, 
total strain rate, and plastic strain rate remain the same throughout the loading history. From 
the flow law, eq. (5) and the relation between deviatoric stress, deviatoric total and inelastic 
strains, eq. (3a), it follows that those tensor variables are co- linear for proportional multi-
axial conditions. The constitutive equations described here have generally been found 
applicable for both proportional and non-proportional loading histories unless the non-
proportionality is a major factor of the loading condition. 
 
An example of strong non-proportional loading is the case of a rapid change in the direction 
of imposed straining in the inelastic range where the interests are the effective modulus 
(stiffness) at the onset of the change and also the continued response behavior. This case was 
examined by Rubin and Bodner (1995) and required a generalization of the basic flow law, 
eq. (5). The matter of effective modulus is directly related to the buckling of structures in the 
inelastic range when the buckled state exhibits stress components which were previously 
zero. Another example is the increase of hardening of some metals subjected to repeated 
cyclic straining by two or more strain components which are out of phase with one another, 
e.g. Ohno (1990). 
 
The influence of non-proportionality of loading on inelastic response behavior has received 
attention in recent years. Experiments have indicated changes in the rate of hardening and in 
the saturation value of hardening of various metals as a consequence of non-proportionality. 
Methods to provide for these effects have generally been based on proposing a measure of 
non-proportionality which modifies parameters in the appropriate hardening evolution 
equations by functions of that measure. Since non-proportionality leads to the generation of 
additional slip systems, increases of the hardening parameters are usually observed. Proposed 
measures of non-proportionality are the angles between a pair of the non-dimensional forms 
of the variables: deviatoric stress, deviatoric stress rate, total deviatoric strain rate, plastic 
strain rate, and the directional hardening tensor ijβ  and its rate ijβ& , e.g. Bodner (1987), Ohno 
(1990). Other aspects of additional hardening due to non-proportional cyclic loading are 
described by Doong et al. (1990) and Jinghong and Xianghe (1991). 
 
3.6  Viscoplastic buckling 
 
Criteria for inelastic buckling of ideal structures (without imperfections) by bifurcation, i.e. 
by the generation of additional deformation modes, have been well established for 
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rate- independent elastic-plastic materials when the onset of buckling maintains proportional 
loading conditions. The standard procedure is to replace the elastic modulus in the criterion 
for elastic buckling by the tangent modulus, i.e. by the tangent to the governing stress-strain 
curve in the inelastic range at the applicable stress level. For elastic-viscoplastic materials, 
the mathematical treatment of the bifurcation condition in the inelastic range based on Hill's 
(1958) stability theory corresponds to requiring an instantaneous jump in strain rate which 
leads to elastic response and therefore elastic buckling, e.g. Obrecht (1977), Tvergaard, 
(1989). Inertial effects are not considered in conventional analyses of bifurcation. 
 
That bifurcation of ideal structures of rate dependent materials is elastic is not practically 
useful and an analyt ical approach to the problem has been to assume small imperfections in 
the geometry of the structure in order to determine the maximum load carrying capability 
from the load-deformation relationship, e.g. Mikkelsen (1993). This method can be 
reasonably realistic but is cumbersome especially for complicated structures. 
 
Proposals to provide an approximate rate or time dependent tangent modulus from particular 
response characteristics were made some years ago, e.g. Gerard (1956), Carlson (1956), but 
these lacked general applicability. These suggestions were based on deducing an effective 
time and stress dependent tangent modulus from results of tensile creep tests. It is noted, 
however, that except for the simple cases of linear elasticity and rate independent uniaxial 
stressing, basic mechanical properties cannot be obtained directly from time dependent 
response characteristics. The intervention of proper constitutive equations is needed so that 
the material property could be expressed in terms of state quantities that are load history 
dependent. Another approach to the creep buckling problem was that of Rabotnov and 
Shesterikov (1957) who used a dynamic stability criterion based on an equation of motion 
that included inertial terms and a presumed equation of state for the material. That method 
was attractive from the basic mechanics viewpoint and led to an expression for a time 
dependent tangent modulus at the applied stress level which differed from the other 
formulations. However, their equation of state employed plastic strain which is not a state 
variable and the predictions were not good. 
 
More recently, Bodner et al. (1991) suggested that an approximate value for the effective 
tangent modulus for elastic-viscoplastic materials can be obtained in terms of state quantities, 
particularly, stress and hardening variables. The objective was to use the constitutive model 
described in this article to obtain an expression for the approximate tangent modulus at 
bifurcation. From the evolution equations for isotropic and directional hardening, eqs. (11), 
(15), (16), a plastic tangent modulus can be derived on the basis that the plastic strain rate 
remains almost constant at buckling and there is also no thermal recovery of hardening. This 
leads to,  
  ( ) ( )[ ] ( )[ ]DI2

eff
D
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T ZZ/ZZmZZmE +σ−+−=  (28) 

For general loading conditions, the suggested procedure would be to evaluate effσ  and ZI and 

ZD from the constitutive equations at each increment of loading in order to determine P
TE  

from eq. (28). On that basis, a total tangent modulus ET  could be obtained from P
TE  assuming 

the rate independent relationship, ( ) ( ) ( ),E/1E/1E/1 P
TT +=  which is then used in the rate  
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independent inelastic buckling criterion. A similar procedure was used by Paley and Aboudi 
(1991a,b) in their investigations on the inelastic buckling of plates. 
 
For the case of constant stress and the absence of thermal recovery of hardening, eq. (28) 
indicates a steady decrease of P

TE  and therefore of ET  with continued inelastic straining. As 
the hardening saturation values Z1 and Z3 are approached, ET  would tend to zero indicating, 
for compressive stress, the possibility of creep buckling. With thermal recovery of hardening 
considered in the response behavior, eq. (28) implies that creep buckling of a perfect 
structure could occur only in the primary creep range or not at all. Whether this formulation 
leads to realistic creep-buckling times has not been examined. 
 
Mikkelsen (1993) compared predictions based on the proposed approximation with load 
maxima obtained from analyses of columns with initial imperfections under steady total 
strain rates. A different form of viscoplastic constitutive equation was used in the exercise. 
The comparisons showed mixed agreements over the range of material rate sensitivity and 
magnitude of initial imperfection. For some cases, the approximate method led to comparable 
results. A possible source of the disagreements is that the values used for the stress and the 
hardening variable in the proposed expression for P

TE , intended to be equivalent to eq. (28), 
are based on an overall steady plastic strain rate rather than on a steady total strain rate which 
would be more realistic for the particular loading circumstance. As discussed previously in 
relation to eq. (14), the difference in the respective stress-strain curves would be largest at the 
"knee" of the curves which could be the region of interest for inelastic buckling problems 
under steadily increasing loading. An alternative procedure for column buckling would be to 
use the computed stress-strain curve at the relevant steady total strain rate as the reference for 
obtaining an approximate ET  for "bifurcation". 
 
A recently proposed alternative approach to the stability of structures of rate dependent 
material is to set up the equations of motion, without inertial effects, for a small perturbation 
of the system and to establish a linear stability criterion for the response, Massin et al. 
(1999). This was demonstrated for some simple structures with and without initial 
imperfections. The application of this approach to practical problems has still to be 
developed. 
 
An important and more complicated inelastic buckling condition is the development of 
bifurcation modes with stress components which were zero in the pre-buckled state, i.e. 
where the onset of buckling leads to non-proportional loading. An example is the case of 
columns of cruciform cross section that could experience inelastic buckling in torsion (shear) 
under compressive loading. There are other examples in problems of the inelastic buckling of 
plates and shells. Classical rate independent, incremental elastic-plastic theory with a yield 
criterion indicates that such bifurcation modes would respond elastically since there would be 
zero initial plastic strain rate in the direction of the newly induced stresses. For elastic-
viscoplastic materials, non-proportional bifurcation modes would also lead to elastic 
buckling if the conventional flow law, eq. (5), is employed. 
 
It seems, however, that modification of the flow law could provide a basis whereby an 
incremental plasticity theory would describe non-proportional buckling involving  
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viscoplastic materials. Details of the modification and some results are given by Rubin and 
Bodner (1995) and an outline is presented here. 
 
First, a quantity Rb is introduced which is the reduced effective shear modulus defined as the 
component of the non-dimensional stress rate in the direction of straining divided by the 
magnitude of the strain rate, namely,  
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In eq. (29), e&  is the absolute value of the total deviatoric strain rate, ( ) 0e ee 2/1

ijij ≠= &&& , and, 

from eq. (3c), ( )P
ijijij eeG2s &&& −=  for constant temperature. Rb therefore depends on both the 

magnitude and direction of the total deviatoric strain rate ije&  and the plastic strain rate P
ije& . It 

could be regarded as the non-dimensional tangent shear modulus GT/G in the direction of the 
current total deviatoric strain rate. For rate independent material behavior and maintained 
proportional loading at bifurcation, i.e. P

ijij e,s &  and ijε&  are co-linear, the current tangent 
modulus would govern buckling, as discussed previously. In relation to eq. (29), bifurcation 
of ideal structures of rate dependent materials would generate a strain rate jump for which the 
immediate response would be 0P

ij =ε&  or elastic buckling. It follows that the applicable GT  to 
control inelastic buckling should be rate independent, such as the suggestion to use the 
tangent to the current rate dependent stress-strain relation as a rate independent 
approximation for column buckling. 
 
To further investigate the case of rate dependent material behavior in bifurcation problems 
involving non-proportional loadings, the plastic flow law, eq. (5), was modified to, 
  ( ) ijij

P
ij

P
ij nFgse λ+λ==ε &&  (30) 

For the added term of eq. (30), ijn  is taken to be normal to the current deviatoric stress ijs  

and to depend directly on the total deviatoric strain rate ije&  while the coefficient F is 
considered to be a non-dimensional function of hardening properties of the material. Also, 
g(λ) acts as the Heavyside function to be unity in the inelastic range. The physical motivation 
for the addition is to enable immediate generation of plastic flow on the new slip planes 
activated by the change in direction of the overall strain rate ije& . Initial hardening on the 

newly generated slip planes would be more rapid with increasing strain than continued 
hardening on the original slip planes, so the physical situation is different from that resulting 
from bifurcation under proportional loading and is also different than the Bauschinger effect. 
Similar physical reasoning may have motivated the attempts to justify the deformation theory 
of plasticity and the concept of corners on a yield surface. 
 
The tensor ijn  is assumed to be deviatoric and to be the component of the total deviatoric 
strain rate normal to deviatoric stress. On that basis, 
  ( ) ijklklijij 'u'ueen ⋅−= &&  (31) 
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where ij'u  is the direction of deviatoric stress ijs . From eq. (31), the term ijnF)(g λ  is linear 
in the total deviatoric strain rate so its contribution to straining would be rate independent. 
Since ijn  is normal to deviatoric stress, the term does not contribute to the plastic work rate. 
It is non-zero only for non-proportional loading when it acts to modify the elastic strain rate 
( )P

ijij ee && −  and thereby alters the effective modulus. With the modified flow law, the 
constitutive equations are not in the class of equations considered in previous investigations 
on viscoplastic buckling and the consequence of elastic buckling at bifurcation does not 
apply. 
 
In the case of buckling of the compressed cruciform column, it was shown by Rubin and 
Bodner (1995), that the expression for Rb reduces to F1R b −=  at the onset of bifurcation 
and Rb could vary from close to unity near the beginning of the developed inelastic range and 
decrease to a value slightly above zero as the hardening prior to buckling approached its fully 
saturated value. On that basis, F was chosen to be 
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where 0)0(kl =β  and 0Z)0(Z = . The choices of the constants 23.0k1 = , 70.0k 2 = , were 
found to lead to good agreement with test results on the buckling in torsion of compressed 
cruciform columns of an aluminum alloy. Expression (32) and the empirical constants, k1,k2 
have not been confirmed as authentic material properties. Nevertheless, the overall procedure 
indicates that an incremental elastic-viscoplastic theory without a yield criterion can serve as 
a possible basis for treating such bifurcation problems. 
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4.  Integration of Constitutive Equations  
 
The basic equations of the unified elastic-viscoplastic theory discussed here consist of the 
general kinetic equation (8) or a specialized form, eqs. (9) or (10), and the evolution 
equations for isotropic and directional hardening, eqs. (11), (15), (16). A number of other 
unified theories of elasto-viscoplasticity have been proposed some of which are described in 
the volumes edited by Miller (1987), by Freed and Walker (1991) and by Krausz (1996), and 
reports compiled by Chan et al. (1984) and by Allen and Harris (1990). In view of the 
potential usefulness of this class of constitutive theories, attention has been given to the 
problem of numerical integration of the mathematically "stiff" equations inherent in those 
theories. The intention has been to develop efficient numerical integration schemes that could 
be adopted into finite element and finite difference programs for the solution of practical 
problems. One such method was developed by Tanaka and Miller (1988) which was directed 
toward the constitutive model of Miller [described in Miller (1987)]. Several other 
computational schemes were examined by Bass and Oden (1988) with reference to a few 
unified constitutive theories. They proposed a new algorithm which improved the efficiency 
of the numerical procedures, but relatively large computational times were still required to 
solve problems. 
 
Some moderately efficient numerical integration schemes were developed directly for use 
with the B-P constitutive model and were capable of demonstrating the features of load 
history dependence as well as rate sensitivity, work hardening, and temperature coupling. 
These included the investigations of Smail and Palazotto (1984) on creep crack growth, Sung 
and Achenbach (1987) on temperatures generated at a moving crack tip, and that of 
Dombrovsky (1992). Recently, very efficient methods for integrating the full set of the B-P 
equations were developed by Rubin (1989) and by Cook, Rajendran and Grove (1992). They 
used a generalized radial return method together with an implicit integration scheme which, 
in conjunction with certain general algorithms, lead to short computational runs. 
 
As an example, a computer program for the uniaxial stress σ11 case with isotropic and 
directional hardening, but without thermal recovery of hardening, has been prepared by M.B. 
Rubin and is included in this article as Appendix A. This specialized integration method is 
performed in the context of the MATLAB program. Appendix B is a listing of the full 
nomenclature used in this article. 
 
It is useful to perform a few exercises with this program to demonstrate the capabilities of the 
equations and the influence of the various parameters on the response characteristics. For the 
conditions of uniaxial stress, imposed straining and isotropic hardening without thermal 
recovery, the relevant equations are (9) and the first part of eq. (11). The material constants 
needed to represent a uniaxial stress-strain relation are E, D0, n, Z0, Z1 and m1, where E is 
Young's modulus and D0 is an assigned quantity. The general shape of the stress-strain curve 
in the inelastic range obtained at a constant imposed overall strain rate 11ε&  is determined by 
the hardening rate m1 and the ratio of the saturation to initial hardening variables Z1/Z0, while 
the particular curve can be obtained by additionally determining Z0 for a prescribed n, with 
D0 initially set. For values of m1 and Z1/Z0, it is possible from eq. (9) to obtain different 
combinations of n and Z0 to represent the same stress-strain curve at a prescribed ε=ε &&11 , as  
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numerically demonstrated in Fig. 6. For the present exercise, three different values of the 
parameter n, which controls rate sensitivity of the response, were chosen. Methods for 
obtaining realistic material constants from test data are described in a subsequent section. 
 
In Fig. 6, three combinations of n and Z0, and common values of m1 and Z1/Z0 were used to 
represent the reference (arbitrarily chosen) stress-strain curve at an imposed strain rate of 

13
11 sec10 −−=ε=ε && . These sets were: 

 
 n  Z0(GPa)  Z1(Gpa)  m1(1/Gpa)  Z1/Z2 
 0.5  71.35  142.7  50  2 
 1  10.0  20.0  50  2 
 5  2.075  4.15  50  2 

 
with 18

0 sec10D  and  GPa 200E −== . 
 
It is of interest to evaluate alternative loading histories that would demonstrate the differing 
rate sensitivity effects for the various n values. The case of stress relaxation for the three sets 
of constants is shown in Fig. 7 and the increase of rate sensitivity with decreasing n leads to 
significantly higher amplitudes of stress relaxation with time. Rate sensitivity effects are 
even more pronounced for uniaxial straining at imposed rates other than the reference 

13
11 sec10 −−=ε& . Simulations for imposed straining rates of 310− , 1 and 13 sec10 −  are shown 

in Figs. 8a,b,c for the parameter sets with 0.5  and  1 ,5n =  respectively. Rate sensitivity of 
the flow stress for 5n =  and associated constants is almost absent while it is pronounced for 

5.0n = . 
 
A simulation with the set of constants for 1n =  was also performed for loading, unloading 
and reloading at the same high strain rate, 13

11 sec10 −=ε& , and is shown in Fig. 9a. Another 
exercise with initial loading at the high rate but unloading and reloading at the lower rate 

1sec 1 −  is shown in Fig. 9b. The initial unloading response at the lower rate is similar to the 
stress relaxation process while the reloading flow stress level is lower than the initial stage. 
However, the memory of the initial high rate loading is maintained in the increased level of 
the essentially elastic range. 
 
Exercises on rapid changes of strain rate during loading are shown in Figs. 10a,b. A sudden 
increase of imposed strain rate by 6 decades, 133 sec10  to10 −− , is shown in Fig. 10a. The 
initial elastic response and the approach to the monotonic straining curve at the higher rate 
are clearly indicated. Alternatively, a sudden six decade decrement in strain rate results in a 
rapid drop in stress level with respect to strain and an approach to the lower constant strain 
rate curve from above as seen in Fig. 10b. These realistic features, that the jump to the higher 
rate is below the constant high rate curve and the jump to the lower rate is above the constant 
lower rate curve, are consequences of using plastic work, rather than plastic strain rate, in the 
evolution equation for hardening. There is, however, a time delay between the strain rate 
reduction and the stress drop as observed experimentally by Lipkin et al. (1978). 
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As discussed previously, representation of the observed decrease in hardening upon stress 
reversal requires the introduction of directional hardening described by eqs. (15), (16). Using 
the set of material constants with 1n =  for uniaxial loading, unloading, and continued 
reversed loading at 13

11 sec10 −−=ε&  provides the solid curve in Fig. 11 based on isotropic 
hardening. Including directional hardening with rate 12 mm =  and saturation value 5Z3 =  
MPa and reducing that for isotropic hardening Z1 to 15 MPa (to keep the total hardening at 
saturation at 20 MPa) leads to the dotted curve in Fig. 11 which is more realistic. Full cyclic 
response curves are shown in Fig. 12a for isotropic hardening and in Fig. 12b for combined 
isotropic and directional hardening. The latter is obviously closer to the cyclic behavior of 
most metals. In many cases, the rate of directional hardening m2 tends to be more rapid than 
that for isotropic hardening m1. This has the effect, for 12 m3m =  in the current exercises, of 
smoothing the transition from elastic to inelastic behavior, Fig. 13a. Fully reversed cyclic 
stress-strain curves for n=1, m2=3m1 with isotropic and directional hardening at 

13
11 sec10 −−=ε&  are shown in Fig. 13b. 

 
A number of finite element programs have been developed which implement the B-P 
equations as the material model. These include the following: Newman et al. (1976), 
[NONSAP] - Zaphir and Bodner (1979), Smail and Palazotto (1984), Dexter et al. (1987), 
[MARC] - Chan et al. (1989), Pandey et al. (1991), Dexter et al. (1991), Zhu and Cescotto 
(1991), Dombrovsky (1992), [EPIC-2] - Cook et al. (1992), Nicholas et al. (1993), 
[ABACUS] - Li and Sharpe (1996), [ABACUS] - Zeng and Sharpe (1997), Kollman and 
Sansour (1997), Sansour and Kollman (1998). Exercises using the finite difference method 
with the B-P equations include those of Bodner and Aboudi (1983), Nicholas et al. (1987), 
and the [STEALTH] code - Rajendran and Grove (1987). The computational results obtained 
by Bodner and Aboudi (1983) for wave propagation in rods of elastic-viscoplastic are in 
general agreement with experimental observations as discussed by Nicholas and Rajendran 
(1990), pp. 133, 134. 
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5.  Material Constants and Applications  
5.1  Background 

 
Initial interest in applying unified viscoplastic theories was in determining deformations and 
stresses in structural components at high temperatures subjected to steady and low frequency 
cyclic loadings. These problems originated in the operation of gas turbine engines and power 
generation plants. Strain rates were generally less that 1 sec-1 and could be as low as 

17 sec10 −− . For these problems, the parameter D0 in the kinetic equation (8) of the B-P model 
was set to be 104 sec-1 and sets of material constants were generated on that basis. These 
applications usually involved high temperatures so thermal recovery of hardening was an 
important component of the evolution equations. A number of more recent applications of the 
B-P model were concerned with strain rates above 1sec 10 −  and were therefore based on the 
higher value of 18

0 sec10D −= . These sets of material constants could also be used at lower 
strain rates making use of modern numerical techniques. Recovery of hardening is usually 
unimportant in applications at high strain rates so those parameters tend to be omitted in the 
determination of the high rate material constants. 
 
Some of the early exercises used a slightly different form of the kinetic equation in which the 
factor ]n/)1n[( +  appeared as a coefficient to the ( )2

eff
2 /Z σ  term in equation (8). To 

correlate all the sets of material constants to the equations described in this article, the 
parameters Z0, Z1 and Z2 were re-evaluated in these cases by, 
  [ ] etc.,Zn/)1n(Z 0

)n2/1(

0 +=  (33) 

where the Z  values are those given in references with the factor. Values of the other material 
constants remain unchanged. Those parameter sets with the revalued Z terms are indicated in 
the following tables by an asterisk. A few other slight variations of the form of the B-P 
equations used here appear in the literature. For example, Aboudi (1991) employed the above 
factor and also used (m/Z0) instead of m1 in the evolution equation for isotropic hardening  
eq. (11). 
 
Aside from the matters of the factor in the kinetic equation and the assumed value for D0, 
differences in the derived material constants for presumably the same material are found in 
some references. One reason is that applications concerned with monotonic loadings tend to 
use only the isotropic hardening variable and ignore the contribution of directional 
hardening. This is usually adequate at high strain rates and inelastic strains that are not very 
small. The influence of the directional hardening variable provides additional flexibility in 
the representation of monotonic stress-strain relations when used in addition to isotropic 
hardening and is particularly useful in accurately modelling the region slightly above the 
primarily elastic range. This was shown in experimental and numerical exercises by Li and 
Sharpe (1996) and Zeng and Sharpe (1997) to accurately measure and describe the biaxial 
strains at the roots of notches in axially strained specimens. Another reason for variability is 
that separate exercises may rely on data bases obtained over different ranges of strain rate 
which could involve deformation mechanisms in addition to that of thermal activation. This 
could occur for fcc metals if some of the data is in the range of very high strain rates. 
Another factor is material variability which is especially characteristic of almost pure metals 
where small differences in impurities or heat treatment could have a large influence on the  
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response behavior, e.g. copper and aluminum. Stainless steels also seem to show significant 
material variabilities, as has been noted by various investigators, which makes them difficult 
to model. 
 
 
5.2Methods for determination of material constants 
 
A few methods of parameter determination from test data for the B-P model have been 
proposed in the literature. These were based primarily on direct correlation of the influence 
of the parameters in the equations with particular response characteristics. That is, use was 
made of the observation that each of the parameters was sensitive to certain information in 
the appropriate reference test data. In the case of the B-P equations, traditional uniaxial stress 
tests such as controlled monotonic straining at fixed rates and creep straining at constant 
stress proved to be adequate for obtaining the parameters in the basic equations. 
Conventional tensile, compressive and shear testing can be performed for strain rates up to 

1sec 1 −  while high rates, up to 13 sec10 − , can be obtained with the Kolsky apparatus - the so-
called split Hopkinson bar test (SHB). With special care and analyses, strain rates to 

14 sec10 −  have been obtained with the SHB. Higher rates to approximately 16 sec10 −  are 
achievable with Clifton's apparatus, e.g. Tong et al. (1992). Tests involving rapid changes in 
strain rates involve complicated strain rate histories and are not recommended as a basis for 
parameter determination but as examples of possible predictive check tests. 
 
A reasonable test procedure was to perform standard controlled straining tests over a range of 
applied strain rates and temperatures for which thermal recovery of hardening was negligible. 
With 0D  initially assigned, the parameters to be determined are n, 1310 m,Z,Z,Z  and 2m . 
Usually, the most influential is n which, for an assigned D0, can be obtained from the strain 
rate dependence of the saturation stress sσ  at which plastic and total strain rates are 
essentially equivalent under controlled straining. However, most straining tests do not extend 
to stress saturation because of inelastic instability or test limitations so that condition has to 
be extrapolated from the available data. Use is made of the general observation that 
directional hardening saturates more rapidly than isotropic hardening, i.e. 12 mm > . 
 
The method developed by Chan et al. (1988,89,90a) is to approximate the uniaxial stress-
plastic strain curve obtained at a constant total strain rate by taking the stress 11σ  to be a 

polynomial function of plastic strain P
11ε  upon subtracting the elastic strain E/11σ . From this 

function, the quantity 
P
11

11

11 d

d1
ε
σ

σ
=η  is evaluated by a least squares method and plotted as a 

function of stress. Consistent with the basic equations and for 12 mm > , such plots are 
generally bilinear with an upper slope 2m  and a lower slope 1m  as shown in Fig. 14, from 
Chan et al. (1988). The intercept of the extended curve with η=0 would be the saturation 
stress sσ  at which the applied strain rate is equivalent to the plastic strain rate. Performing 

this exercise at various strain rates would give sσ  as a function of strain rate from which n 
could be obtained as the slope of the linear plot of the logarithm of the relationship  
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( ) ( )0
P
111ss D,KZ/ ε=σ & , from eq. (9), with K1 given by eq. (14a). That slope would be 

independent of sZ  which is the total hardening value at stress saturation in a monotonic 

loading test. With n determined, 31s ZZZ +=  could be obtained from eq. (9) for a particular 

plastic (total) strain rate and associated stress sσ  at saturation. Another relation involving 

those parameters and 0Z  corresponds to the intercept of the extension of the upper part of the 
η-σ plot with η=0 using the governing equations for that condition. An approximation for 
obtaining 0Z  would be to use 11y σ=σ  in eq. (9) where yσ  is the engineering yield stress, 

but here P
11ε&  is not exactly equivalent to the applied 11ε& . The approximation could be 

improved by comparison with the actual stress-strain curves. With 0Z  known, the relations 

obtained from the η-σ plot serve to determine the individual values of 1Z  and 3Z . On the 
basis of this procedure, it is seen that values obtained for n and the hardening constants will 
depend on the assigned value for D0. Changing D0 would require working through the 
equations to obtain a new set of constants. 
 
It is noted that the above process enables evaluation of the governing directional hardening 
parameters, 32  Zand m , from monotonic stress-stain curves. Reversed stressing and cyclic 
loading curves are generally not required but would be useful checks on the results. In some 
cases, the monotonic test data may not be adequately sensitive for accurate determination of 
the directional hardening parameters and reversed stressing tests would then be necessary. 
When only isotropic hardening is present or when both directional and isotropic hardening 
have equivalent rates, then the η-σ curve would be linear with a single slope so that 
consideration of only isotropic hardening would be adequate for modelling purposes. 
 
With the rate sensitivity and hardening parameters determined, creep tests or controlled 
straining tests at low strain rates provide the information needed to obtain the constants 
associated with thermal recovery of hardening: 22121  Zand r,r,A,A . Details of the procedure 
are given in Chan et al. (1988,89,90a). 
 
A procedure somewhat similar to that of Chan et al. (1988) was recently developed by 
Senchenkov and Tabieva (1996) based on numerical integration of the basic equations rather 
than the plotting of η-σ curves. The authors claim their method is more direct and accurate 
but in numerical exercises for the same material, a high temperature alloy, the differences of 
derived parameter values between the two procedures was small. 
 
Another modification to the procedure of Chan et al. (1988) was exercised by Rowley and 
Thornton (1996) in obtaining sets of B-P material constants for Hastelloy-X and Aluminum 
alloy 8009. The proposed method involves assuming an initial value for n, obtaining the 
corresponding hardening constants, and then refining the values by an iteration procedure. 
The matching of the resulting stress-strain simulations to the test data was very good over a 
range of strain rates and temperatures. 
 
Applying the method of Chan et al. (1988) to test results for a ductile steel, A533B, obtained 
over a large range of strain rates, 133 sec10   to10 −− , and temperatures, C175  to60 °− ,  



 

 31 

indicated that using only isotropic hardening was adequate in this case, Dexter and Chan 
(1990). The η-σ curves for this material were essentially linear until saturation. All the 
material constants were evaluated in a straightforward manner and thermal recovery of 
hardening was not operative over the ranges of interest. 
 
Another series of tests at high strain rates, -1sec 2000100 −  using the SHB and also some 
plate impact tests at higher rates, was performed by Rajendran et al. (1986) [see also Cook et 
al. (1992)]. Test results extended to saturation but details at the "knee" of the stress-strain 
curves were lacking. For the intended purpose of analyzing structures under impact loadings 
that generated moderate strain levels, it seemed that only isotropic hardening without thermal 
recovery would be sufficient. With 0D  fixed at 18 sec10 − , the parameters to be determined 

were 110 m,Z,Z,n , and P
11ε&  was assumed to be equivalent to 11ε&  over the inelastic range of 

interest. A slightly different parameter determination procedure than that of Chan et al. 
(1988) was used in that exercise, [Rajendran et al. (1986)]. As in the procedure of Chan et al., 
n was determined from the strain rate dependence of the saturation stress. Eq. (9) was 
rewritten in terms of logarithmic functions so it could be represented as a linear relation with 
slope -2n. The test results were plotted to the same stress-strain rate coordinates which 
enabled determination of the material constants n and 1Z . The values of 01  Zand m  were 
subsequently obtained by fitting the test results to the integrated form of the evolution 
equation for isotropic hardening, eq. (11) without thermal recovery, i.e. eq. (12). 
 
It is noted that the methods for parameter determination described above involve step by step 
procedures so that the results are no t necessarily unique but have been found suitable for 
practical purposes. More sophisticated methods for identification of material constants have 
been developed by Mahnken and Stein (1996) and by Senseny and Fossum (1995) and 
Fossum (1998). These should lead to unique parameter values but are somewhat complicated 
to use. However, they could serve as a means of refinement of the parameter values obtained 
by the methods based on physical interpretations. 
 
Sets of material constants based on the reference constitutive theory have been published for 
a number of metals and metallic alloys. Some of these sets are listed in the following section 
and their probable ranges of applicability are indicated. In the few cases of variations in the 
obtained constants for the same material, the author has listed what he considers to be the 
most reliable sets of values presently available. 



 

 32 

5.3  Examples 
5.3.1  A. Alloys for high temperature applications at low strain rates; assumed 

14
0 sec10D −= . 

5.3.1.  B1900 +Hf, a Ni base alloy: 
5.3.1.1.1  Non-Creep Characterisitics 
 References: Chan et al. (1988, 1989, 1990a,b). 
 Temperature Range: RT to 1093°C. 
 Strain Rates: 138 sec105  to10 −−− × . 
 Considered Applicable Strain Rate Range: 118 sec10  to10 −− . 
 Conditions: uniaxial and biaxial tensile, creep and cyclic under proportional and non-

proportional loading, thermomechanical loading paths, and isotropic and directional 
hardening with thermal recovery. 

 Temperature-Independent Constants: 14
0 sec10D −= , 

   MPa, 1150  Z,MPa 3000Z 31 ==  -1
2

-1
1 MPa 52.1m  ,MPa 270.m == , 2rr 21 ==  

 temperature dependent constants: 
  Temperature, °C 
 Constants  T≤760°C  871°C  982°C  1093°C 
 n 
 Z0 (=Z2) (MPa) 
 A1=A2(sec-1) 

 1.055 
 2700 
 0 

 1.03 
 2400 
 .0055 

 0.85 
 1900 
 .02 

 0.70 
 1200 
 .25 

 
 Elastic Moduli for B1900+Hf: 
 Cin  T with MPaT 10143.1T 1034.T 78.1610987.1E 3525 °×+−+×= −  
 Cin  T with MPaT 10464.3T 102.321T 58.1710650.8G 352-24 °×−×+−×= −  
 
Note: this metal does not experience additional hardening under non-proportional biaxial 
cycling. 
 
5.3.1.1.2  B1900+Hf - creep damage investigation, tertiary creep, creep crack growth: 
 
 References: [Bodner and Chan (1986), Chan (1988)]. 
 Temperature Range: 649°C to 1093°C. 
 Strain Rates: 138 sec105  to10 −−− × . 
 Considered Applicable Strain Rate Range: 118 sec10  to10 −− . 
 Conditions: uniaxial tensile straining and constant load tensile creep, isotropic and 

directional hardening with thermal recovery and isotropic damage development. 
 Temperature-Independent Constants for Damage Development, eqs. (22,23): 
 9

0 101  ,34.8z  ,1p −×=ω== , in addition to previously listed constants. 
 Temperature Dependent Damage Constant, eq. (22): 
 [ ] )C1093(105 );C982(104  );C871(102sec)MPa(H 202427z °×°×°×=  
 
5.3.1.2  René 95:  
 
 Reference: [Bodner (1979)]. 
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 Temperature Range in Above Reference: at 650°C only. 
 Strain Rates in Above Reference: 138 sec10  to10 −−− . 
 Considered Applicable Strain Rate Range: 118 sec10  to10 −− . 
 Conditions: uniaxial monotonic and cyclic straining and creep and stress relaxation, 

isotropic hardening with thermal recovery. 
 Material Constants (650°C): 14

0 sec10D −= , 

 MPa  1670)Z(  Z,2.3n 20 === , 1
11 MPa  4.0m  ,MPa 2300Z −== ,  

 MPa  101.77E  ,5.1r ,sec 104A 5
1

14
1 ×==×= −− . 

 Where Z is revalued for factor in kinetic equation 
 
5.3.1.3  IN-100:  
 References: [Smail and Palazotto (1984), from Stouffer (1981)]. 
 Temperature Range in Above References: at 732°C only. 
 Strain Rates in Above References: 138 sec10  to10 −−− . 
 Considered Applicable Strain Rate Range: 118 sec10  to10 −− . 
 Conditions: uniaxial monotonic and cyclic straining and creep, isotropic hardening with 

thermal recovery, investigation of creep crack growth in compact tension specimens. 
 Material Constants (732°C): 14

0 sec10D −= , 

  MPa, 7800  ZMPa, 180,13  Z,MPa 880,11  Z,7.0n 210 ====  

 MPa101.793E  2.66,r  ,sec109.1A  ,MPa 37.0m 5
1

13
1

-1
1 ×==×== −−  

 Where Z is revalued for factor in kinetic equation 
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5.3.1.4  Inconel 718: 
 

  This material has received attention because of its high temperature 
applicability but is difficult to model in certain temperature and strain rate ranges where it 
exhibits dynamic strain ageing and consequently negative strain rate sensitivity. That was 
demonstrated by James et al. (1987) for tests at 593°C and an empirical correction factor 
formulated by Schmidt and Miller was introduced for adequate representations of the 
results. Other test programs were performed at 650°C with associated exercises on the 
determination of parameters considering isotropic hardening with thermal recovery of 
hardening, Eftis et al. (1989), Kolkailah and McPhate (1990). What seems to be the most 
exacting series of tests at 650°C were carried out more recently by Li and Sharpe (1996) 
and the parameter determination procedure considered both isotropic and directional 
hardening and their thermal recovery. The B-P equations with those parameters were then 
used to predict stresses, strains and deformations at the roots of notched specimens under 
monotonic and cyclic loadings and under creep conditions. Comparisons of the predicted 
biaxial strains to accurate optical measurements at the notch roots indicated very good 
agreement. 

 
_____________________________________ 
 
 Reference: [Li and Sharpe (1996)]. 
 Temperature Range: at 650°C only. 
 Strain Rates: 147 sec105  to10 −−− × ; dynamic strain ageing  
  appeared at 13 sec10 −−≥ε& . 
 Conditions: at 650°C, uniaxial and cyclic straining and constant load tensile creep, 

isotropic and directional hardening with thermal recovery. 
 Material Constants (650°C): 14

0 sec10D −= , ( )   MPa,  5000ZZ  ,12.1n 20 ===  

  MPa, 6000Z1 =  MPa, 660Z3 =  ,MPa 84.0m  ,MPa 046.0m 1
2

1
1

−− ==  

 7.6rr  ,sec104.3AA 21
12

21 ==×== −− .  GPa 0.175E = . 
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5.3.1.5  Hastelloy-X:  
 Reference: Rowley and Thornton (1996). 
 Temperature Range: RT (25°C) to 538°C. 
 Strain Rates: 135 sec102   to102 −−− ×× . 
 Considered Applicable Strain Rate Range: 107 sec10  to10 −− . 
 Conditions: uniaxial tensile, no thermal recovery in test temperature range. 
 Temperature-Independent Constants: 14

0 sec10D −= , 

   MPa, 603  Z,MPa 2390Z 31 ==  -1
2

-1
1 MPa 49.3m  ,MPa 139.0m ==  

 
 Table 3.  Temperature Dependent Constants: 
 
  Temperature, °C 
 Constants  T=25°C  204°C  371°C  538°C 
 n 
 Z0 (=Z2) (MPa) 
 E(GPa) 

 1.00 
 1860 
 197 

 0.90 
 1830 
 187 

 0.85 
 1790 
 175 

 0.824 
 1760 
 161 
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5.3.1.6  Astroloy:  
 Reference: Dexter, Chan and Couts (1991). 
 Temperature Range: RT (25°C) to 982°C. 
 Strain Rates: 136 sec101   to105 −−− ×× . 
 Considered Applicable Strain Rate Range: 107 sec10  to10 −− . 
 Conditions: tensile straining and constant load creep, isotropic hardening with thermal 

recovery. 
 Temperature-Independent Constants: 14

0 sec10D −= , 

    ,MPa 29000Z1 = 2r1 = . 
 
 Temperature-Dependent Constants: 
 
  Temperature, °C 
 Constants  T=25°C  760°C  871°C  982°C 
 n 
Z0 (=Z2) (MPa) 
 )MPa(m 1

1
−  

 )(secA 1
1

−  
 E(GPa)  

 0.524 
 23,000 
 0.015 
 0 
 220 

 0.509 
 23,000 
 0.320 
 0 
 163 

 0.456 
 21,000 
 0.320 
 3104 −×  
 149 

 0.387 
 20,000 
 0.675 
 - 
 118 
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5.3.2  Applications at low strain rates )sec10( 1−<  ; assumed 14
0 sec10D −=  

5.3.2.1  High Purity Aluminum (99.9999): 
 Reference: Mahnken and Stein (1996). 
 Temperature Range: at 277°C only. 
 Strain Rates: 146 sec 102   to105 −−− ×× . 
 Considered Applicable Strain Rate Range: 136 sec 10  to105 −−−× . 
 Conditions: uniaxial tensile straining and creep, isotropic hardening only with no 

thermal recovery. 
 
 Material Constants (277°C): 14

0 sec10D −= , 

 MPa 2860   Z,MPa 1380   Z,38.1n 10 === ,  1
1 MPa 8.3m −=  

Where Z is revalued for factor in kinetic equation 
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5.3.2.2  Aluminum Alloy 8009 
 Reference: Rowley and Thornton (1996) 
 Temperature Range: 25#°C to 275#°C. 
 Strain Rates: 137 sec105 to 10 −−− × . 
 Considered Applicable Strain Rate Range: 127 sec10 to 10 −−− . 
 Conditions: uniaxial compressive straining and tensile creep, isotropic and directional 

hardening with thermal recovery. 
 Temperature Independent Constants: 14

0 sec10D −= , 

 1
2

1
131 MPa95.3m  ,MPa 532.0m  ,MPa 275Z  ,MPa 937Z −− ====  

 
Temperature Dependent Constants for Aluminum Alloy 8009 

Constants  25#°C  100#°C  175#°C  225#°C  275#°C 

 n  1.95  1.72  1.64  1.47  1.35 
MPa)Z(Z 20 =   828  793  758  724  690 

)(secA 1
1

−   0  0  0.02  0.03  0.05 

 21 rr =   -  -  3  3  3 
 E(GPa)  83.4  79.3  69.0  67.5  65.5 
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5.3.2.3  Aluminum Alloy AMG-6 (Russian) 
 Reference: [Senchenkov and Tabieva (1996)]. 
 Temperature Range: 20#°C to 400#°C. 
 Strain Rates: 127 sec104  10 −−− ×− . 
 Considered Applicable Strain Rate Range: 117 sec10 to 10 −−− . 
 Conditions: tensile straining, isotropic and directional hardening with thermal recovery. 
 Temperature-Independent Constants: 14

0 sec10D −= , 

   ,MPa 80Z   ,MPa 35Z   ,MPa 647Z 321 ===  

 4rr  ,MPa 7.3m  ,MPa 182.0m 21
1

2
1

1 ==== −− . 
 
 Temperature-Dependent Constants for Aluminum Alloys 

Constants  20#°C  300#°C  400#°C 

 n  2.06  2.0  1.9 
)MPa( Z0   324  306  280 

)(secA 1
1

−   0  3105.3 −×   0.15 

)(secA 1
2

−   0  2104.5 −×   0.99 
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5.3.2.4  Zirconium Alloy (Zr - 2.5 wt percent Nb) 
 Reference: [Zeng and Sharpe (1997)]. 
 Temperature Range: at 250#°C only. 
 Strain Rates: 138 sec1010 −−− − . 
 Considered Applicable Strain Rate Range: 118 sec10  to10 −−− . 
 Conditions: uniaxial tensile straining and creep, isotropic and directional hardening 

with thermal recovery. 
 Material Constants (250#°C): 14

0 sec10D −= , 

 MPa 230   ZMPa, 916   Z,MPa 825)Z(   Z,2.3n 3120 ===== . 

 2.2rr   ,sec10AA   ,MPa 8.1m   ,MPa 06.0m 21
17

21
1

2
1

1 ====== −−−− . 
 0.3  ,GPa 95E =ν= . 
 
_______________________________ 

Notes: The above material parameters were used in the B-P theory to predict biaxial 
strains at the roots of notched specimens during loading and for a creep duration of 100 
hours. Comparisons with accurate optical measurements indicated very good agreement. 
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5.3.2.5  Eutectic Solder, 63/37 Sn/Pb: 

 Reference: [Skipor, Harren and Botsis (1996)]. 
 Temperature Range: -40#°C to 100#°C. 
 Strain Rates: 1110 sec10    to107 −−−× . 
 Considered Applicable Strain Rate Range: 119 sec10  to 10 −−− . 
 Conditions: tensile straining and steady load creep, isotropic hardening with thermal 

recovery. 
 Temperature-Independent constants (in above temperature range): 14

0 sec10D −= , 

   MPa 90.0m    ,MPa 1900Z  ,MPa 1550)Z(Z 1
1120

−====  
 
 Temperature-Dependent Constants: 

Constants  -40#°C  -10#°C  20#°C  60#°C  100#°C 

 n  0.475  0.445  0.439  0.412  0.391 
)(secA 1

1
−   0  51012.1 −×   3101.5 −×   3106.8 −×   9101.4 ×  

 1r   -  1.2  1.9  2.3  8.5 
 E(GPa)  32  27  20  16  12 
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5.3.2.6  Titanium Alloy Timetal 21S (a candidate matrix material for a MMC): 
 Reference: Neu and Bodner (1995). 
 Temperature Range: at 482#°C and at 650#°C. 
 Strain Rates: 136 sec10  - 10 −−− . 
 Considered Applicable Strain Rate Range: 127 sec10  to 10 −−− . 
 Conditions: tensile straining and creep, isotropic and directional hardening with thermal 

recovery. 
 Temperature-Independent Constants (for the Two Temperatures Indicated):  
 14

0 sec10D −= , 

     MPa 100  Z,MPa 3500Z 31 ==  

 1
1c

1
1b

1
a1 MPa 001.0m*  ,MPa 0.2m*  ,MPa 20m* −−− ===  

 1
2 MPa 0.4m −=  

 1
1c

14
b1 MPa 005.0*A*  ,sec102A** −−− =×=  

 5.3rr  ,sec102A 21
14

2 ==×= −−  
 

Temperature-Dependent Constants for Timetal 215: 
Constants  482#°C  650#°C 

 n  1.15  0.94 
)MPa)(Z(Z 20 =   300  100 

)(secA** 1
a1

−   0.01  100 

 
 * Defined by eq. (21a) 
 ** Defined by eq. (22) 
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5.3.3   Applications at high strain rates (> 10 sec-1); assumed 18
0 sec10D −= . 

 
5.3.3.1  References: results obtained by Rajendran, Bless and Dawicke (1986) for a number 

of metals; also published in Nicholas and Rajendran (1990) page 208; Cook et al. 
(1992), and Zukas (1994) page 10. 

 
 Strain Rates: 132 sec103 to 10 −× . 
 
 Considered Applicable Strain Rate Range: 14 sec10 to  10 − . 
 
 Conditions: room temperature only, isotropic hardening with no thermal recovery. 
 
 material constants, room temperature: 18

0 sec10D −= . 
 
 material  n  *M  **Z0  **Z1  m1 
    (MPa)  (MPa)  (MPa-1) 
C1008 steel 0.4 4.787  26,330  33,500 0.015 
HY100 steel 1.2 1.287  3,090  4,570 0.01 
1020 steel 4.0 1.028  658  956 0.03 
6061-T6 alum. 4.0 1.028  463  565 0.12 
7039-T64 alum. 4.0 1.028  576  780 0.028 
Nickel 200 4.0 1.028  330  843 0.04 
W2 - tungsten 0.58 2.372  20,760  23,720 0.15 
Armco iron 0.58 2.372  6,275  9,960 0.056 
 
 
Notes: The values of Z0, Z1 in the table on p.208 of Nicholas and Rajendran (1990) are based 

on the factor [(n+1)/n] in the kinetic equation although their statement of the kinetic 
equation, eq. (96), is equivalent to eq. (8) of this article;  
a misprint exists in the printing of the B-P kinetic equation of Zukas (1994), p.10, but 
the table of the B-P model constants appears to be consistent with those with the 
factor. 
 

Values of constants Z0, Z1 revalued according to eq. (33) to conform to equations (8) and 
(11) in this report (**). 

 
*M: Multiplier for reevaluation of Z0 and Z1 from reference data. 
 
** Z is revalued for factor in kinetic equation 
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5.3.3.2  Alpha Titanium (Commercially Pure): 
 
 Reference: Gilat and Tsai (1990). 
 
 Temperature Range:  room temperature only. 
 
 Strain Rates  (data taken from different sources): 10 to 13 sec10 − . 
 
 Considered Applicable Strain Rate Range: 10 to 14 sec10 − . 
 
 Conditions: dynamic shear tests, isotropic and directional hardening without thermal 

recovery. 
 
 Material Constants (room temperature): 18

0 sec10D −= , 
 
 MPa, 5740   ZMPa, 5063   Z,708.0n 10 ===    MPa, 380Z3 =  
 
 1

2
1

1
-- MPa 520.0m   ,MPa 034.0m == , 

 
 E = 118 GPa,   ν = 0.34   (other sources). 
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5.3.4.  Applications over a wide range of strain rates )sec10 to (10 164 −− ; assumed 
18

0 sec10D −= . 
5.3.4.1  Pure Copper (99.99%) 
 
5.3.4.1.1  OFE for the lower strain rates, OFHC for the high rates. 
 
 Main Reference: Bodner and Rubin (1994). 
 
 Strain Rates (in shear): 164 sec10  to10 −− . 
 
 Conditions: uniaxial shear over a wide range of strain rates at room temperature, 

isotropic hardening without thermal recovery. 
 
 Material Constants (room temperature): 
 

 17
0 sec105D −×= , MPa, 920   Z,MPa 72   Z,4.3n 10 ===  

 
 13

c
13

b
13

a MPa100.7m*  ,MPa105.0m*  ,Mpa1036M** −−−−−− ×=×=×= , 
 
 1.0*q*   ,sec101** 140

eff =×=ε −& , 
 
** defined by eqs. (21a), (23) 
 
*  defined by eq. (21a) 
 
Notes: Stress-strain rate results are shown in Fig. 5 of this report.  Studies on creep of 

copper at high temperature were performed by Merzer (1982).  An exercise on 
temperature dependence of the uniaxial stress-strain curves of copper  

     at a constant strain rate is summarized on the following page. 
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5.3.4.1.2  Pure Copper (99.99%). 
 
 Main Reference: Bodner and Rajendran (1996). 
 
 Strain Rate (in Compression): 1sec 2000 − . 
 
 Conditions:  uniaxial compression over a wide temperature range (RT to 800#°C) at a 

single strain rate )sec 2000( 1− , isotropic hardening with temperature dependence of 
the saturated hardening variable Z1. 

 
 Temperature-Independent Material Constants: 
 
 17

0 sec105D −×= , ,MPa 40   Z,4.3n 0 ==  
 
 1

c
13

b
13

a MPa 0.7m*  ,MPa106.3m*  ,Mpa1036M** −−−−− =×=×= , 
 
 1.0*q*   ,sec101** 140

eff =×=ε −& , 
 
 
 
** defined by eqs. (21a), (23) 
 
*  defined by eq. (21a) 
 
 
 
 Bilinear temperature dependence of ]MPa 1450)T(Z)[T(Z 011 =  is as follows: 
 

 
 value)physicala not  isit   

,TTfor  )T(Z of slope determines T(

re) temperatun(transitio  TT           ;        
TT
TT

1ZZ

t1

t

d

0

0
11

<

<




















−
−−→

 

 

 t

d

tm

t
11 TT           ;       

TT
TT

1ZZ ≥




















−
−

−→   , 

 
 where  CTCTCTCTd mt °=°=°=°== #1450     ,#1083     ,#850     ,#25     ,1 0  
 
Note: Measured compressive stress-strain curves for copper over the temperature range RT to 

800#°C at the imposed strain rate of 2000 sec-1 and corresponding simulations are 
shown in Figure 15. 
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5.3.4.2  Annealed Commercially Pure Aluminum, 1100-0: 
 
 Reference: Huang and Khan (1992). 
 
 Strain Rates: 145 sec1010 −− − . 
 
 Temperature Range: RT only. 
 
 Conditions: uniaxial compression testing at room temperature over a wide range of 

strain rates, isotropic hardening only without thermal recovery. 
 
 Material Constants (Room Temperature) for Strain Rate Range; 135 sec104  to10 −− × : 
 
 18

0 sec10D −= ,  ,87.0n = MPa 1030  Z,MPa 550Z 10 ==   
  
 142

01 MPa10410)Z/'m(m −−×=×= . 
 
 
 
Notes: This reference indicates good agreement of simulations based on the isotropic 

hardening B-P model with the performed tests over most, but not all, of the range of 
results; primary disagreements were as follows: 

  (a) regions of stress-strain curves slightly beyond the essentially elastic range were 
not well represented; this was apparently due to the non- inclusion of directional 
hardening, equations (15 and 16) as was used for the modeling of aluminum alloys, 
pages 61, and 62. 

  (b) apparent need for different values for n at slow and high strain rates; this seems to 
be due to the noninclusion of the strain rate dependence of the hardening rate at the 
high strain rates, equation (23), as was used for modeling copper, page 68. 
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5.3.4.3  A533B Steel: 
 
 Reference: Dexter and Chan (1990). 
 
 Temperature Range in above reference: -60#°C to 175#°C. 
 
 Strain Rates in above reference: 133 sec10  to10 −− . 
 
 Considered Applicable Strain Rate Range: 144 sec10  to10 −− . 
 

 Conditions: tensile testing over a range of strain rates and temperature, isotropic 
hardening without thermal recovery. 

 
 Temperature Independent Material Constants (over range of interest):  
 
 18

0 sec10D −= ,  E(RT) = 207 Gpa. 
 

Temperature Dependent Material Constants for A533 B Steel 
 

Constants  -60#°C  -10#°C  50#°C  100#°C  175#°C 
n  1.62  1.68  1.75  2.57  2.77 
Z0(MPa)  1772  1491  1379  907  827 
Z1(MPa)  2224  1992  1804  1236  1112 
m1(MPa-1)  .050  .053  .064  .066  .074 

 
 
Note: Unlike most metals, strain rate sensitivity decreases with increasing temperature (n 

becomes larger); as the authors point out, this may be due to dynamic strain-aging at 
the higher temperatures.  However, the flow stress at a given plastic strain does 
decrease with increasing temperature, as expected, since the decrease of hardening (Z0, 
Z1) with temperature appears to have a stronger influence on the flow stress than that of 
the increase of the rate sensitivity parameter n. 
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6.  Further Developments 
 
6.1  Large Deformations 
A number of formulations of rate- independent and rate-dependent plasticity for large 
deformations have been proposed in recent years. An early contribution for rate dependent 
materials was that of Bodner and Partom (1972b). There is still controversy as to which 
formulation is most appropriate, but the one most relevant to the constitutive equations 
described in this report is that of Rubin (1986). A feature of that large strain theory is that all 
the material constants are obtainable from the corresponding set of small strain equations 
described here. That is, no additional material constants are required when large 
deformations are considered. The theory also seems to be free of non-physical peculiarities 
that rise in some other proposals. Another recent formulation of a large deformation theory is 
due to Sansour and Kollman (1997,98). 
 
An essential difficulty in assessing large deformation theories of plasticity is the lack of 
experimental data that is sensitive to the different formulations. The design and performance 
of such experiments would seem to be a reasonable objective for future investigations. 
 
6.2  Anisotropic materials 
Of considerable interest are fiber-matrix composites in which one or more components are 
elastic-viscoplastic. There seem to be two general approaches in modelling the mechanical 
behavior of these anisotropic materials. One is to perform a detailed analysis of a typical sub-
volume in which the distinct geometries of the fibers and matrix are evident and 
distinguishable so that the response of the mini-structure to loading can be treated as a 
mechanics problem. This micro-mechanics or meso-mechanics approach, as it is sometimes 
called, has received much attention. One example is the "method of cells" developed by 
Aboudi (1991). In some of the applications of this method, the matrix is considered to be 
elastic-viscoplastic governed by the B-P equations while the fibers are taken to be elastic and 
are isotropic or transversely isotropic. Apparent advantages of the B-P equations in this 
application are the lack of a yield condition and the capability of treating both plastic 
deformation and creep by the same set of equations. 
 
Other procedures using analyses on the microscale have been developed based on the finite 
element method. Some of these have also incorporated an isotropic unified plasticity theory 
to represent the behavior of each of the component materials. A recent combined numerical 
and experimental investigation on the fatigue life of a metal matrix composite is reported by 
Foulk et al. (1998). Another investigation by Gao and Xiang (1999) examined the stress 
distribution in the vicinity of cracks in a cross-ply metal matrix composite. 
 
An alternative approach to model anisotropic materials by unified elastic-viscoplastic 
constitutive equations is to generalize the isotropic formulation. A possible procedure on the 
continuum level is to redefine the stress invariant in the basic kinetic equation to apply to 
anisotropic media and to suitably readjust the hardening parameters. Such an exercise was 
performed by Robinson and Miti-Kavuma who introduced an effective stress defined in 
terms of invariants which reflected local transverse isotropy. In this generalized model, the  



 

 50 

strong initial anisotropy is a dominant feature. Numerical examples indicate good agreement 
with test results for a metal matrix composite. 
 
Other generalized continuum models have been developed by various investigators to 
specifically treat polymer matrix composites. An exercise to generalize the B-P equations for 
that purpose was performed by Yoon and Sun (1991). This seems to be a subject of 
continuing active research. 
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7.  Summary - Status of the B-P Constitutive Theory 
 
At this stage, the B-P constitutive theory is well developed and provides a set of equations 
that adequately represents the main features of rate dependent inelastic behavior of metals 
and alloys. Relatively few material parameters appear in the equations and these could 
generally be related to specific response characteristics which indicates a satisfactory 
physical basis of the governing equations. As a consequence, the parameters have physical 
interpretations and their values can be obtained from a limited band of conventional test data 
such as stress-strain curves at constant strain rates. Techniques for parameter identification 
from such test data have been devised. The equations have been incorporated into finite 
element and finite difference computer programs with applications over a very wide range of 
strain rates and temperatures. They appear to be suitable for characterizing components of 
composite materials and can serve as a basis for failure criteria of ductile metals. 
 
A response condition that has not been fully examined by the B-P theory is cyclic loading 
with repeated load reversals and the associated matter of ratchetting. Some work has been 
done on cyclic loading of a high temperature alloy and on annealed copper for which the 
basic B-P equations appear to be adequate. However, certain materials and particularly 
stainless steels indicate more complex behavior which requires modification of the hardening 
evolution equations. These conditions have received attention from a number of investigators 
using unified theories with the "back stress" approach; particularly by Chaboche and 
colleagues in France and Ohno and colleagues in Japan. It seems that comparable 
modifications of the B-P equations could be readily performed. As discussed in this article, 
both the "directional hardening" and "back stress" variables are admissible macroscope 
representations of potentially reversible hardening effects. 
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Appendix A 

Computer Program for Uniaxial Stress and Isotropic and Directional Hardening  (by  M.B. 
Rubin) 

 
The following Program was executed using  
 
MATLAB Version 5.2.0.3084 
The Math Works, Inc. 
 
 
function Visco 
%   Visco is the main program that calculates the response of an 
% elastic viscoplastic metal for uniaxial stress 
 
global mat sigt dtt Z jp1 stres 
 
%------------------------------------ 
% Specify the material constants 
mat = zeros(1,8); 
 
E = 200.0;  %  Young's modulus (GPa) 
D0 = 1.0e+8;  % Controls maximum plastic strain rate (1/s) 
n = 1.0;  % Controls rate sensitivity 
Z0 = 10.0;  % Initial value of isotropic hardening ZI (GPa) 
Z1 = 15.0;  % Maximum value of ZI (GPa) 
m1 = 0.05e+3;  % Controls rate of isotropic hardening (1/GPa) 
Z3 = 5.0;  % Maximum value of directional hardening ZD (GPa) 
m2 = 0.15e+3;  % Controls rate of directional hardening (1/GPa) 
 
mat(1) = E;  
mat(2) = D0;  
mat(3) = n;  
mat(4) = Z0;  
mat(5)  = Z1;  
mat(6) = m1;  
mat(7) = Z3;  
mat(8) = m2;  
 
%------------------------------------- 
%  Specify the specify number of loading cycles 
nload   = 1;  % Number of loading cycles 
 
% Specify cycle 1 
nstep(1)    = 400;  % Number of steps in the cycle 
e11f(1)     = 5.0e-2; % Final value of the total strain for the cycle 
rate(1)     = 1.0e-3; % Magnitude of the total strain rate for the cycle (1/s) 
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     % If rate = 0 then it is assumed that relaxation 
occurs 
dtrel(1)  = 0.0;  % Relaxation time for the cycle.  If rate is positive then 
      the magnitude of dtrel is ignored 
 
% Specify cycle 2 
nstep(2)    = 400; 
e11f(2)     = -2.5e-2; 
rate(2)     = 1.0e-3; 
dtrel(2)  = 0.0e+0; 
 
% Specify cycle 3 
nstep(3)    = 400; 
e11f(3)    = 2.5e-2; 
rate(3)     = 1.0e-3; 
dtrel(3)  = 0.0; 
 
% Specify cycle 4 
nstep(4)    = 400; 
e11f(4)     = -2.5e-2; 
rate(4)     = 1.0e-3; 
dtrel(4)  = 0.0e+0; 
 
 
%---------------------------------------------- 
%  Calculate the total number of steps 
ntotal = 0; 
for i=1:nload; 
  ntotal = ntotal + nstep(i); 
end 
 
%---------------------------------------------- 
%  Initialize the stres array 
%  stres(:,1) = time (s); 
%  stres(:,2) = e11 = total strain 
%  stres(:,3) = ep11 = plastic strain; 
%  stres(:,4) = ZI = isotropic hardening (GPa); 
%  stres(:,5) = bet11 = directional hardening parameter (GPa); 
%  stres(:,6) = ZD = directional hardening (GPa); 
%  stres(:,7) = sig11 = axial stress (GPa); 
%  stres(:,8) = dWp = rate of plastic work (GPa); 
%  stres(:,9) = value of the function f; 
stres = zeros(ntotal+1,9); 
stres(1,4) = Z0; 
 
%-------------------------------------------------- 
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%   Calculate the time increments for each step 
dt = zeros(nload); 
rate(1) = sign(e11f(1)) *rate(1); 
dt(1) = e11f(1)/rate(1)/nstep(1); 
for i=2:nload 
  if rate(i)>0.0 
    de11 = e11f(i)-e11f(i-1); 
    rate(i) = sign(de11) *rate(i); 
    dt(i) = de11/rate(i)/nstep(i); 
  else 
    dt(i) = dtrel(i)/nstep(i); 
  end 
end 
 
%-------------------------------------------- 
%  Calculate the response 
istep = 0; 
for i=1:nload; 
  for jj=1:nstep(i); 
 % Calculate time 
 dtt = dt(i); 
    j = istep + jj; 
 jp1 = j + 1; 
    stres(jp1,1) = stres(j,1) + dtt; 
 % Calculate total strain 
    stres(jp1,2) = stres(j,2) + dtt*rate(i); 
 % Calculate elastic trial value of stress 
 sigt = E*(stres(j+1,2) - stres(j,3)); 
 % Calculate the scale factor lamda 
 Z = stres(j,4) + stres(j,6);  % Use old value of hardening Z 
 lamda = 1.0;   % Initial guess for lamda 
 lamda = fzero('fun',lamda); 
 % Calculate stress 
 stres(jp1,7) = lamda*sigt; 
 % Calculate plastic strain 
 stres(jp1,3) = stres(jp1,2) - stres(jp1,7)/E; 
 % Calculate increment of plastic work 
 dtWp = lamda*(1.0- lamda)*sigt^2/E; 
 % Calculate rate of plastic work 
 stres(jp1,8) = dtWp/dtt; 
 % Calculate isotropic hardening 
 stres(jp1,4) = Z1 - (Z1 - stres(j,4))*exp(-m1*dtWp); 
 % Calculate directional hardening 
 u11 = sign(sigt); 
 stres(jp1,5) = Z3*u11 - (Z3*u11 - stres(j,5))*exp(-m2*dtWp); 
 stres(jp1,6) = stres(jp1,5)*u11; 
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  end 
  istep = istep+nstep(i); 
end 
 
 
 
function f = fun(lamda)  
%   The function fun determines the function  
% who's root gives the scalar value lambda 
 
global mat sigt dtt Z jp1 stres 
 
%  Input material parameters 
E  = mat(1); 
D0 = mat(2); 
n = mat(3); 
 
% Calculate function f 
sig = abs(sigt); 
if sig > 0.0 
 factor = 2*dtt*D0/sqrt(3.0)*E/sig; 
 f = 1.0 - lamda - factor*exp(-0.5*(Z/lamda/sig)^(2.0*n)) ; 
else 
 f = 0.0; 
end 
stres(jp1,9) = f; 
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Appendix B 
Nomenclature  

 
Symbol              Description 

ije         deviatoric total strain 
 

P
ije         deviatoric plastic strain 

 
e         absolute value of deviatoric total strain 
 

ije&         deviatoric total strain rate 
 
e&         absolute value of deviatoric total strain rate 
 

P
ije&         deviatoric plastic strain rate 

 
P
effe&         effective plastic strain rate, eq. (6a) 

 
g,i,j,k        indices 
 

21 m,m         rates of hardening (isotropic and directional) 
 

c1b1a1 m,m,m   coefficients in expansion of 1m , eq. (21a) 
 

c2b2a2 m,m,m   coefficients in expansion of 2m , eq. (21b) 
 
n       term in kinetic equation, (7)-(10), that controls rate sensitivity and influences       

level of flow stress 
 

21 r,r        exponents in expressions for thermal recovery of isotropic and directional  
 hardening 
 

ijs       deviatoric stress 
 
s&       absolute value of deviatoric stress rate 
 

iju       direction of stress, eq. (15a) 
 

ij'u       direction of deviatoric stress 
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ijv       direction of directional hardening variable, eq. (15b) 

Symbol            Description 
 

ijw       direction of plastic strain rate, eq. (19a) 
 

ijy       direction of "back stress" variable 

 

21 A,A       coefficients of thermal recovery of hardening (isotropic and directional) 
 

0D       maximum plastic strain rate (assigned value) 
 

P
2D       second invariant of deviatoric plastic strain rate 

 
E      elastic (Young's) modulus 
 

TE       tangent (Young's) modulus 
 

P
TE       plastic tangent (Young's) modulus 

 
F      scalar function of hardening variables in expanded flow law, eq. (30). 
 
G      elastic shear modulus 
 

TG       tangent shear modulus 
 

2J       second invariant of deviatoric stress 
 
K      elastic bulk modulus 
 

1K       = )n2/1(
0 )]R3/D2(n2[ −l , eq. (14a) 

 

aM       coefficient for rate dependence of hardening rate, eq. (23) 
 
R      constant axial plastic strain rate value, in eq. (14a) for 1K  
 

1R       imposed (total) axial strain rate 
 
SECW      stored energy of cold work (following G.I. Taylor) 
 
T      current temperature 
 

mo T,T       reference and melting temperatures 
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Symbol            Description 
 

pW       accumulated plastic work 

 

pW&       plastic work rate 
 

gZ       internal state variables 
 
Z      total hardening variable )ZZ( DI +=  
 

IZ       isotropic hardening variable 
 

0Z       initial value of isotropic hardening variable 
 

1Z       maximum (saturated) value of isotropic hardening variable 
 

2Z       minimum (fully annealed) value of isotropic hardening variable 
 

3Z       maximum (saturated) value of directional hardening variable 
 

DZ       component of directional hardening variable in direction of current stress,  
 )u ( ijijβ= , eq. (16) 
 
α      coefficient of linear thermal expansion 
 

ijα       "back stress" or "kinematic" hardening variable 
 

ijβ       directional hardening variable 
 
γ      uniaxial engineering shear strain 
 

ijγ&       engineering shear strain rate 

 
P
ijγ&       engineering plastic shear strain rate 

 

ijδ       Kronecker delta function 
 

ijε&       total strain rate 
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e
ijε&       elastic strain rate 

Symbol            Description 
 

P
ijε&       plastic strain rate 

 
P
effε&       effective plastic strain rate [= P

effe& , eq. (6a)] 
 

cε       uniaxial creep strain 
 
λ      coefficient in flow law 
 
ν      elastic Poisson's ratio 
 

ijσ       stress (in general) 

 

effσ       effective stress, eq. (6b) 
 

sσ       saturated (maximum) stress 
 

yσ       engineering yield stress 
 

ijτ       shear stress (usually used specifically for ji ≠ ) 
 
ω      isotropic damage variable 
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Fig. 1: Inelastic strain rates for uniaxial tension, 11σ , and various values of n. 
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Fig. 2: Dependence of the uniaxial flow stress parameter on the strain rate parameter for 

various values of the strain rate sensitivity constant n. 
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Fig. 3: Dependence of the uniaxial flow stress parameter on the (temperature dependent) 

strain rate sensitivity constant n for different values of the strain rate parameter. 
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Fig. 4: Simulation by Bodner and Lindenfeld (1995) of stored energy change as a function of 

total work during three consecutive half cycles in comparison with Halford's 
experiment, Halford (1966). 
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Fig. 5: Flow stress dependence of copper on logarithm of strain rate,  
 (a) original B-P model for Z = 222 MPa (corresponding to γ = 0.20  
  at the lower rates), and for the stress saturation condition with 
  MPa920ZZ 1 == :  
 (b) modified B-P model with strain rate dependence of the hardening  
  rate:  
 (b) experimental points for γ = 0.20, Tong et al. (1992):  
 Simulations from Bodner and Rubin (1994). 
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Fig. 6: Representation of identical stress-strain curves for different combinations of n and Z0 

with m1 and Z1/Z0 fixed. 

 
Fig. 7: Effect of rate-sensitivity parameter n on stress relaxation behavior with the same 

material constants used in Fig. 6. 
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Fig. 8: Effect of rate sensitivity parameter n on stress-strain behavior at various imposed 
rates with the same material constants used in Figs. 6,7. 
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Fig. 9: Loading, unloading, and re- loading stress-strain curves for n = 1 and associated 

constants; initial loading 13 sec10 −=ε& ; 
 (a) unloading and reloading, 13 sec10 −=ε& ; 
 (b) unloading and reloading, 1sec1 −=ε& . 
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Fig. 10: Effect of changes of imposed strain rate on stress-strain response for  

n = 1 and associated constants; 
 (a) initial loading 13 sec10 −−=ε& , secondary loading 13 sec10 −=ε& , 
 (b) initial loading 13 sec10 −=ε& , secondary loading 13 sec10 −−=ε& . 
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Fig. 11: Stress-strain curves upon loading, unloading and reversed loading for isotropic 

hardening (I) only, and with isotropic (I) and directional hardening (D), for n = 1 
and associated constants with m2 = m1, 13 sec10 −−=ε& . 
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Fig. 12a: Cyclic stress-curves, n = 1 and associated constants,  

1-3
12 sec10 ,mm −=ε= & , isotropic hardening only. 
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Fig. 12b: Cyclic stress-curves, n = 1 and associated constants,  

1-3
12 sec10 ,mm −=ε= & , combined isotropic and directional hardening. 
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Fig. 13: Stress-strain curves for n = 1 and associated constants, 13 sec10 −=ε& , 
 (a) monotonic straining m2 = m1 and m2 = 3m1, 
 (b) cyclic straining with isotropic and directional hardening, m2 = 3 m1. 
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Fig. 14: The isotropic and directional hardening components of B1900+Hf  
  in an η-σ plot [from Chan et al. (1988)]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 15: Comparison of the experimental data of Gray et al. (1994) for compression with the 

Bodner-Partom model simulations taking )T(ZZ 11 → , 
 [from Bodner and Rajendran (1996)]. 
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Fig. 16: Plots of stresses and associated steady strain rates. 

 (a) René 95 at 1200ºF (649ºC), (100 ksi = 689.5 Mpa) [Bodner (1979)]. 
 (b) Copper at 550ºC, ο calculated, × test [Merzer (1982)]. 


